
PVS System Guide
Version 7.1 • August 2020

S. Owre
N. Shankar
J. M. Rushby
D. W. J. Stringer-Calvert
{Owre,Shankar,Rushby,Dave_SC}@csl.sri.com

http://pvs.csl.sri.com/

SRI International
Computer Science Laboratory • 333 Ravenswood Avenue • Menlo Park CA 94025

{Owre,Shankar,Rushby,Dave_SC}@csl.sri.com
http://pvs.csl.sri.com/

NOTE: This manual is in the process of being updated. Almost everything stated here is
still correct, but incomplete due to the many new features that have been introduced into
PVS over the years. The release notes should be consulted for the most current information.

The initial development of PVSwas funded by SRI International. Subsequent enhancements
were partially funded by SRI and by NASA Contracts NAS1-18969 and NAS1-20334,
NRL Contract N00014-96-C-2106, NSF Grants CCR-9300044, CCR-9509931, and CCR-
9712383, AFOSR contract F49620-95-C0044, and DARPA Orders E276, A721, D431,
D855, and E301.

Contents

Contents ack

1 Introduction 1

2 A Brief Tour of PVS 7
2.1 Creating the Specification . 8
2.2 Parsing and Typechecking . 10
2.3 Proving . 11
2.4 Status . 14
2.5 Generating LATEX . 14

3 PVS Commands 17
3.1 Exiting PVS . 17
3.2 Getting Help . 18
3.3 Editing PVS Files . 19
3.4 Parsing and Typechecking . 19

3.4.1 Parsing . 19
3.4.2 Typechecking . 20
3.4.3 Typechecking Information . 22

3.5 Proving . 22
3.5.1 Proving a Single Formula . 23
3.5.2 Proving Sets of Formulas . 25
3.5.3 Selecting Decision Procedures . 27
3.5.4 Editing and Viewing Proofs . 28
3.5.5 Displaying Proof Information . 32
3.5.6 Adding and Modifying Declarations 34
3.5.7 Prover Emacs Commands . 35
3.5.8 General Commands . 35
3.5.9 Prover Commands . 35
3.5.10 Proof Stepper Commands . 38

3.6 Prettyprinting . 39
3.7 Viewing TCCs . 39

ack

ack CONTENTS

3.8 PVS Files and Theories . 40
3.8.1 Finding Files and Theories . 40
3.8.2 Creating New Files and Theories 41
3.8.3 Importing Files and Theories . 42
3.8.4 Deleting Files and Theories . 42
3.8.5 Saving Files . 43
3.8.6 Mailing PVS Files . 43
3.8.7 Dumping Files . 44

3.9 PVS Output . 45
3.9.1 Printing Buffers and Regions . 45
3.9.2 Printing Files and Theories . 45
3.9.3 Generating alltt Output . 45
3.9.4 Generating LATEX Output . 46

3.10 Generating HTML . 48
3.11 Display Commands . 50
3.12 Context Commands . 53
3.13 Library Commands . 55
3.14 Browsing . 56
3.15 Theory Status . 57
3.16 Proof Status . 58
3.17 Environment Commands . 58
3.18 Interrupting PVS . 59

4 Customizing PVS 61
4.1 Invoking PVS . 61
4.2 Emacs . 63
4.3 The PVS Image . 64
4.4 Window Systems . 64

5 Running PVS in Batch Mode 67
5.1 Validation Runs . 70
5.2 Example Validation Run . 71

5.2.1 The Specification . 72
5.2.2 The Validation File . 72
5.2.3 The Validation Run . 72
5.2.4 The Log File . 73

A Unicode 77
A.1 Unicode in PVS Syntax . 77
A.2 Unicode Operators . 78

A.2.1 Alias Symbols . 78
A.2.2 Unary operators . 78
A.2.3 Binary (infix) operators . 79

CONTENTS ack

A.2.4 Bracketing Operators . 81
A.3 Emacs and Unicode . 82

B Introduction to Emacs 83
B.1 Leaving Emacs . 85
B.2 Getting Help . 85
B.3 Files . 86
B.4 Buffers . 86
B.5 Cursor Motion commands . 87
B.6 Error Recovery . 87
B.7 Search commands . 88
B.8 Killing and Deleting . 88
B.9 Yanking . 89
B.10 Marking . 89

Bibliography 91

Index 92

ack CONTENTS

Chapter 1

Introduction

The Prototype Verification System (PVS) provides an integrated environment for the de-
velopment and analysis of formal specifications, and supports a wide range of activities in-
volved in creating, analyzing, modifying, managing, and documenting theories and proofs.
This manual describes the system, including the system commands, the computing envi-
ronment, how to get and install PVS, customization, and a short tutorial on Emacs. The
main set of manuals for the PVS system consists of this manual, the language reference [3],
and the prover guide [7]. There are also several supporting technical reports: the formal
semantics of PVS [5], an advanced tutorial [6], and a description of the abstract datatypes
mechanism [4]. All of these manuals (and much more!) are available online at http:
//pvs.csl.sri.com/

The rest of this chapter provides a broad overview of PVS; the facilities provided by the
system are discussed in the order you are likely to encounter them.

The PVS Environment
PVS runs under 64-bit versions of Linux and MacOSX. It can be run on other 64-bit plat-
forms using virtualbox or VMWare. PVS is implemented in Common Lisp, but it is not
necessary to know Lisp to effectively use the system.1 PVS runs best using the X window
system, though it is not required. The Emacs (Gnu Emacs or XEmacs) editors provide one
interface to PVS; familiarity with Emacs and access to the GNU Emacs manual [8] (usu-
ally available as an info file) are desirable. The LATEX generating facilities require a good
understanding of the LATEX document preparation system [1]. If you have Tcl/Tk available,
there are PVS interfaces provided that display proof trees, theory hierarchies, and proof
commands. Instructions for obtaining and installing the PVS system as well as Emacs, X
windows, LATEX, and Tcl/Tk may be found at http://pvs.csl.sri.com.

1The only exception to this is in writing complex prover strategies.

1

http://pvs.csl.sri.com/
http://pvs.csl.sri.com/
http://pvs.csl.sri.com

2 1 Introduction

The PVS Language
The specification language of PVS is built on higher-order logic; i.e., functions can take
functions as arguments and return them as values, and quantification can be applied to
function variables. There is a rich set of built-in types and type-constructors, as well as a
powerful notion of subtype. Specifications can be constructed using definitions or axioms,
or a mixture of the two.

Specifications are logically organized into parameterized theories and datatypes. Theo-
ries are linked by import and export lists. Specifications for many foundational and standard
theories are preloaded into PVS as prelude theories that are always available and do not need
to be explicitly imported. Details on the PVS language may be found in the PVS language
reference [3].

Specification Files and the PVS Context
PVS specifications are ordinary ascii text files prepared and modified using a text editor—
usually the Emacs editor that acts as the interface to PVS. A PVS specification consists of
any number of such files, each of which contains one or more theories or datatypes. PVS
specification files have the .pvs extension.

Each specification file has associated with it a proof file (with the .prf extension) that
saves the proof scripts generated during proof attempts on formulas contained in the asso-
ciated PVS specification file. In addition, the system generates binary representations of
the typechecked specification files (with the .bin extension) that speed up retypechecking
when a PVS session is resumed in the same context.

The set of files and theories constituting a specification, together with various items of
status information, comprise a PVS context. The PVS context retains information about the
state of a specification and verification from one PVS session to the next. This information
is primarily kept in the .pvscontext file that is associated with each PVS context. It keeps
track of which formulas have been proved, and which binary files are valid by keeping track
of the write dates associated with the various files.

PVS contexts are closely related to directories, and the term context is used in this doc-
ument to refer to either the PVS context or its associated directory. Note that the directory
may contain files other than those produced by or for PVS, but these are not considered to
be a part of the context.

During a PVS session, there is always a current context in which the activities of PVS
take place. For example, typechecking of a specification file is allowed only if that file is a
part of the current context. There are commands for changing the current context during a
PVS session, so that it is unnecessary to exit PVS just to change contexts. Because contexts
are associated with UNIX directories there can be at most one PVS context in a directory, so
for most purposes a PVS context and its containing directory can be treated synonymously.

1 Introduction 3

PVS Libraries
PVS has a library facility that allows files and theories from one PVS context to be used in
another, thus allowing for general reuse, and making it easier to standardize theories that
are frequently used. There are two ways that the library facility can be used: by explicitly
importing a theory from a different PVS context within a specification, or by issuing a
command that effectively extends the prelude.

The PVS User Interface
You interact with the PVS system through a customized Emacs. It is expected, though not
required, that editing of specifications is performed with this editor. Using other editors is
quite painful, as they cannot directly interact with the underlying Lisp image.

Instructions are issued to PVS by means of Emacs commands. For example, in order to
perform a proof, the cursor is positioned at a formula declaration in the Emacs buffer and the
Emacs command M-x prove or the key sequence C-c p is issued. PVS returns information
to you through various display mechanisms provided by Emacs or Tcl/Tk.

The PVS interface allows a certain amount of parallel activity. For example, you can
continue editing theories or perform any other activity supported by Emacs while PVS is
typechecking a series of theories or performing a lengthy proof. Also, you need not wait
for one PVS activity to finish before issuing another command; most commands are queued
for execution in the order they were issued, but certain status and other short commands
preempt any ongoing analyses, perform their function, and then return the system to its
previous activity.

Prettyprinting
The PVS prettyprinter rearranges the layout of PVS specification text into a standard, regular
format. The commands allow the prettyprinting of files, theories, regions, or individual
declarations. You can choose whether to prettyprint specification text, but output from PVS
itself is always prettyprinted.

Parsing
The parser checks theories for syntactic consistency and builds an internal representation
that is used by other components of the system. When errors are detected by the parser or
other components of PVS, the cursor is generally placed at the location where the error was
detected and an error message is displayed in a pop-up window.

4 1 Introduction

Typechecking
The PVS typechecker analyzes theories for semantic consistency and adds semantic infor-
mation to the internal representation built by the parser. The type system of PVS is not algo-
rithmically decidable; theorem proving may be required to establish the type-consistency of
a PVS specification. The theorems that need to be proved are called type-correctness con-
ditions (TCCs). TCCs are attached to the internal representation of the theory and displayed
on request. There are commands available that attempt to prove the TCCs using built-in
prover strategies. You may choose when to prove the TCCs, but until they are proved the
theory that generated them is not considered to be typechecked.

The PVS system automatically tracks the status of theories (whether they have been
changed, parsed, typechecked etc.) and also takes care of the dependencies among theories.
For example, if the specification text of a theory is changed and then a command is issued
that requires semantic information, PVS will parse and typecheck the theory automatically.
More subtly, if the text of a theory that is used by the current theory is changed, both theories
will need to be typechecked in order to guarantee consistency. This happens automatically
as the need arises.

It is often necessary to make changes in theories on which long chains of other theories
depend, and frequent reparsing and retypechecking of such theory chains can be very time-
consuming. Therefore PVS provides commands which allow limited additions and mod-
ifications of declarations without requiring that the associated theories be retypechecked
(Section 3.5.6, page 34).

There is some incremental typechecking that goes on at the theory level. When a type-
check command is issued on a PVS file that has been modified, the file is first parsed, and
the resulting abstract syntax is compared to the previous abstract syntax. If they are the
same, the theory is not retypechecked. Otherwise it typechecks as usual. Comments, added
or deleted whitespace, and certain kinds of expression transformations (such as changing a

+ 1 to +(a,1)) will thus not trigger retypechecking.

Browsing
Specifications can be quite large and involve many theories and files, and it can become
difficult to remember all the identifiers declared, their locations, definitions, and uses. PVS
provides facilities for displaying or visiting the declaration of an identifier indicated by the
cursor, for displaying all references to an identifier, and for producing a cross-reference of
all declared identifiers.

Proving
PVS provides a powerful interactive proof checker with the ability to store and replay proofs.
PVS can be instructed to perform a single proof, or to rerun all the proofs in a given theory,

1 Introduction 5

all the proofs of all the lemmas used in a proof, or all the proofs in an entire specification.
This manual describes how to enter the prover and some of the commands for obtaining
and editing proof information. Details on the proof checker commands may be found in the
prover guide.

Status and Proof Chain Analysis
The PVS system provides several commands for determining the status of specification
elements such as theories and formulas. You can, for example, inquire whether a theory has
been typechecked or whether a specific formula has been proved.

Proof chain analysis is an important form of status report. An individual theorem is
considered proved when it is the conclusion of a successful proof, but this is a local notion;
the result is a true theorem only if all the lemmas appearing in its proof have themselves been
proved or stated as axioms or definitions, and all TCCs have been discharged. Proof chain
analysis assures that all of the aforementioned obligations are discharged. In addition to
recording whether or not the proof chain is sound, the output of this analysis also identifies
the axiomatic foundation of the given theorem.

Generating Output
When a formal specification and verification is complete, it is usually desirable to present
it to others in as readable a form as possible. PVS provides commands for generating LATEX
versions of the specifications and proofs that can be included in typeset documents. The
output produced can be controlled by user-supplied tables so that mathematical notation,
including infix and mix-fix symbols and subscripts and superscripts, can be created easily.
This customized prettyprinting facility makes it possible to reproduce the notation standard
to some branch of mathematics or computer science, thereby assisting peer review of the
formal specification. The typeset specifications are also of value during the development
of a formal specification and verification, as they allow direct comparison with existing,
informal presentations and analyses.

Display Commands
There are a few commands available for displaying graphical information using an interface
to the Tcl/Tk system. These include the display of proof trees, theory hierarchies, and prover
commands. These displays are interactive; for example the proof tree display is updated as
a proof is developed, and clicking on a theory in the theory hierarchy display pops up an
Emacs buffer containing that theory specification.

6 1 Introduction

Other Commands
There are other miscellaneous commands are not easily categorized, such as commands
for sending bug reports, interrupting PVS, getting help, and some commands that help in
editing PVS files.

Chapter 2

A Brief Tour of PVS

In this section we introduce the system by developing a theory and doing a simple proof.
This will introduce the most useful commands and provide a glimpse into the normal usage
of PVS. You will get the most out of this section if you are sitting in front of a terminal
with PVS installed.1. In the following we assume some familiarity with UNIX and Emacs.
If you are unfamiliar with Emacs you may want to look at the introduction in Appendix B
on page 83.

Start by going to a UNIX shell and creating a working directory (using mkdir). Next,
change (cd) to this working directory and start up PVS by typing pvs.2 This command
executes a shell script which runs Emacs, loads the necessary PVS Emacs extensions, and
starts the PVS lisp image as a subprocess. See Chapter 4 on page 61 for further details on the
pvs command and its parameters. After a few moments, you should see the welcome screen
indicating the version of PVS being run, the current directory, and instructions for getting
help. You may be asked whether you want to create a new context in the directory; answer
yes unless it is the wrong directory or you don’t have write permission there, in which case
you should answer no and provide an alternative directory when prompted. When you are
ready to exit PVS, type the key sequence C-x C-c.

In the following, PVS Emacs commands are given first in their long form, followed by
an alternative abbreviation and/or key binding in parentheses. For example, the command
for proving in PVS is given as M-x prove (M-x pr, C-c p). This command can be entered
by holding down the Meta key,3 then pressing x. Release the Meta key, then type prove (or
pr) and press the Return key. Alternatively, hold the Control key down while typing a c,
then let go and type a p. The Return key does not need to be pressed when giving the key
binding form. In PVS all commands and abbreviations are invoked by first typing a M-x;

1If you don’t have it installed, see the instructions at http://pvs.csl.sri.com
2You may need to include a pathname, depending on where and how PVS is installed.
3Most keyboards provide a Meta key (hence the M- prefix). On the ☼4, this key is labeled 3; IBM style

keyboards tend to use the Alt key. The Meta key is like the shift key—to use it simply hold the Meta key down
while typing another key. If your keyboard does not have a Meta key, you can press the Escape key for the
same effect. Note that the Escape key does not act as a shift, but is pressed and released before the command,
e.g. Escape followed by x followed by pr.

7

http://pvs.csl.sri.com

8 2.1 Creating the Specification

everything else is a key-binding. In later sections we will refer to commands by their long
form name, without the M-x prefix. Some of the commands prompt for an argument and
specify a default; if the default is the desired one, you can simply type the Return key.

To begin, type M-x pvs-help (C-c h) for an overview of the commands available in
PVS, and use C-v and M-v to browse the help file and get a feel for the commands provided
by PVS. Type q to exit the help buffer. If you are running Emacs under X windows, you
should see a menu bar across the top of the window, including a PVS entry. If you move the
mouse cursor over this entry, and press the left mouse button, a menu will be displayed that
also shows all the PVS commands (including the help commands). This menu may also be
used to invoke the commands, though most users prefer to learn the keyboard commands as
this is generally faster. When discussing the PVS commands we will not mention the PVS
menu, but you should be aware that all of the PVS Emacs commands are available as menu
entries.

2.1 Creating the Specification
Now let’s develop a small specification. Figure 2.1 shows a specification for summation
of the first 𝑛 natural numbers, as it appears in Emacs. The sum specification is in the top
window, and a proof is in progress in the bottom. The mode line indicates that PVS is ready
for a command.

This simple theory has no parameters and contains three declarations. The first declares
n to be a variable of type nat, the built-in type of natural numbers. The next declaration is
a recursive definition of the function sum(n) whose value is the sum of the first n natural
numbers. Associated with this definition is a measure function, following the MEASURE

keyword, which is explained below. The final declaration is a formula which gives the
closed form of the sum.

The sum theory may be introduced to the system in a number of ways, all of which create
a file with a .pvs extension.4 The most common ways are:

1. Simply use M-x find-file (C-x C-f), or M-x find-pvs-file (M-x ff, C-c C-f),
provide sum.pvs for the file name and type in the specification.5

2. Use the M-x new-pvs-file command (M-x nf) to create a new PVS file, and type
sumwhen prompted for a file name. Then simply type the specification into the buffer
(a basic template will be provided).

3. Since the file is included in the distribution in the Examples subdirectory of the main
PVS directory, it can be imported with the M-x import-pvs-file command (M-x
imf). Use the M-x whereis-pvs command to find the path of themain PVS directory.

4The file does not have to be named sum.pvs, it simply needs the .pvs extension.
5If there is already a file called sum.pvs in the current context, this will load that file.

2.1 Creating the Specification 9

Figure 2.1: The sum Specification in Emacs

10 2.2 Parsing and Typechecking

4. Finally, any external means of introducing a file with extension .pvs into the current
directory will make it available to the system; for example, going to a UNIX window
and using vi to type it in, or cp to copy it from the Examples subdirectory.

2.2 Parsing and Typechecking
Once the sum specification is displayed in the current buffer, it can be parsed with the M-x
parse (M-x pa) command, which checks the syntactic consistency of the specification and
creates the internal abstract representation for the theory described by the specification. If
the system finds an error during parsing, an error windowwill pop up with an error message,
and the cursor will be placed in the vicinity of the error. If you didn’t get an error, introduce
one (say by misspelling the VAR keyword), then move the cursor somewhere else and parse
the file again—note that the buffer is automatically saved. Fix the error and parse once
more. In practice, the parse command is rarely used, as the system automatically parses the
specification when it needs to.

The next step is to typecheck the file by typing M-x typecheck (M-x tc, C-c C-t),
which checks for semantic errors, such as undeclared names and ambiguous types. After
sum has been typechecked, a message is displayed in the minibuffer indicating that two TCCs
were generated. These TCCs represent proof obligations that must be discharged before the
sum theory can be considered typechecked. The proofs of the TCCs may be postponed
indefinitely, though in general it is a good idea to view TCCs to convince yourself that
they are provable before moving on to other proofs in your specification. TCCs can be
viewed using the M-x show-tccs (M-x tccs, C-c C-q s) command, the results of which
are shown in Figure 2.2 below.

% Subtype TCC generated (at line 7, column 32) for n - 1

% expected type nat

% unfinished

sum_TCC1: OBLIGATION FORALL (n: nat): NOT n = 0 IMPLIES n - 1 >= 0;

% Termination TCC generated (at line 7, column 28) for sum(n - 1)

% unfinished

sum_TCC2: OBLIGATION

FORALL (n: nat): NOT n = 0 IMPLIES id[nat](n - 1) < id[nat](n);

Figure 2.2: TCCs for Theory sum

The first TCC is due to the fact that sum takes an argument of type nat, but the type of
the argument in the recursive call to sum is integer, since nat is not closed under subtraction.
Note that the TCC includes the condition NOT n = 0, which holds in the branch of the IF-
THEN-ELSE in which the expression n - 1 occurs.

The second TCC is needed to ensure that the function sum is total, i.e., terminates. PVS
does not directly support partial functions, although its powerful subtyping mechanism al-
lows PVS to express many operations that are traditionally regarded as partial. The measure

2.3 Proving 11

function is used to show that recursive definitions are total by requiring the measure to de-
crease with each recursive call.

These TCCs are trivial, and in fact can be discharged automatically by using the M-x

typecheck-prove (M-x tcp) command, which attempts to prove all TCCs that have been
generated. (Try it.)

2.3 Proving
We are now ready to try to prove the main theorem. Place the cursor on the line containing
the closed_form theorem, and type M-x prove (M-x pr or C-c p). A new buffer will
pop up, the formula will be displayed, and the cursor will appear at the Rule? prompt,
indicating that the prover is ready to accept input. The commands needed to prove this
theorem constitute only a very small subset of the commands available to the prover. In
fact, for this proof all that is actually needed is the single command (induct-and-simplify
"n"), which is a more powerful strategy. For more information on these and other prover
commands consult the prover guide [7].

First, notice the display, which consists of a single formula (labeled {1}) under a dashed
line. This is a sequent; formulas above the dashed lines are called antecedents and those
below are called consequents. The interpretation of a sequent is that the conjunction of the
antecedents implies the disjunction of the consequents. Either or both of the antecedents
and consequents may be empty. An empty antecedent is equivalent to true, and an empty
consequent is equivalent to false, so if both are empty the sequent is false. Every proof
in PVS starts with a single consequent.

The basic objective of the proof is to generate a proof tree of sequents in which all of the
leaves are trivially true. The nodes of the proof tree are sequents, and while in the prover
you will always be looking at an unproved leaf of the tree, called the current sequent. The
current branch of a proof is the branch leading back to the root from the current sequent.
When a given branch is complete (i.e., ends in a proved leaf), the prover automaticallymoves
on to the next unproved branch, or, if there are no more unproven branches, notifies you that
the proof is complete.

Now on to the proof. We will prove this formula by induction on n. To do this, type
(induct "n").6 This is not an Emacs command, rather it is typed directly at the prompt,
including the parentheses. As indicated, two subgoals are generated; the one displayed is
the base case, where n is 0. To see the inductive step, type (postpone), which postpones
the current subgoal and moves on to the next unproved one. Type (postpone) a second
time to cycle back to the original subgoal (labeled closed_form.1).

Three extremely useful Emacs key bindings to know here are M-p, M-n, and M-s. M-p
gets the last input typed to the prover; further uses of M-p cycle back in the input history.
M-n works in the opposite direction. To use M-s, type the beginning of a command that

6PVS expressions are case-sensitive, and must be put in double quotes when they appear as arguments in
prover commands.

12 2.3 Proving

was previously input, and type M-s. This will get the previous input that matches the partial
input; further uses of M-s will find earlier matches. Try these key bindings out; they are
easier to use than to explain. Thus to type the second postpone command above, you can
either type M-p or type (po followed by M-s. Section 3.5.7 on page 35 describes further
useful shortcut commands for the prover.

To prove the base case, we need to expand the definition of sum, which is done by typing
(expand "sum"). After expanding the definition of sum, we issue the (assert) command,
which applies the decision procedures of the prover to simplify the consequent to TRUE,
completing the proof of this subgoal. The prover then automatically moves on to the next
subgoal, which is the inductive step.

The first thing to do here is to eliminate the FORALL quantifier. This can most easily be
done with the skolem! command7, which provides new constants for the bound variables.
To invoke this command type (skolem!) at the prompt. The resulting formula may be
simplified by typing (flatten), which will break up the consequent into a new antecedent
and consequent. The obvious thing to do now is to expand the definition of sum in the
consequent. This again is done with the expand command, but this time we want to control
where it is expanded, as expanding it in the antecedent will not help. So we type (expand
"sum" +), indicating that we want to expand sum in the consequent.8

The final step is to invoke the PVS decision procedures, which can automatically decide
certain fragments of arithmetic. This is done by typing (assert). The assert command
actually does a lot more than decide arithmetical formulas, performing three basic tasks:

• It tries to prove the subgoal using the decision procedures.
• It stores the subgoal information in an underlying database, allowing automatic use

to be made of it later.
• It simplifies the subgoal by rewriting (if any auto-rewrites have been given) and by

using the underlying decision procedures.

These arithmetic and equality procedures are the main workhorses of most PVS proofs.
The proof is now complete, and is saved in the sum.prf file. The buffer from which the

prove command was issued is then redisplayed if necessary, and the cursor is placed on the
formula that was just proved. The entire proof transcript is shown below. Yours may be
slightly different, depending on your window size and the timings involved.

closed_form :

|-------

{1} FORALL (n: nat): sum(n) = n * (n + 1) / 2

Rule? (induct "n")

Inducting on n on formula 1,

7The exclamation point differentiates this command from the skolem command, where you provide the
new constant names.

8We could also have specified the exact formula number (here 1), but including formula numbers in a proof
tends to make it less robust in the face of changes. There is more discussion of this in the prover guide [7].

2.3 Proving 13

this yields 2 subgoals:

closed_form.1 :

|-------

{1} sum(0) = 0 * (0 + 1) / 2

Rule? (postpone)

Postponing closed_form.1.

closed_form.2 :

|-------

{1} FORALL (j: nat):

sum(j) = j * (j + 1) / 2 IMPLIES sum(j + 1) = (j + 1) * (j + 1 + 1) / 2

Rule? (postpone)

Postponing closed_form.2.

closed_form.1 :

|-------

{1} sum(0) = 0 * (0 + 1) / 2

Rule? (expand "sum")

Expanding the definition of sum,

this simplifies to:

closed_form.1 :

|-------

{1} 0 = 0 / 2

Rule? (assert)

Simplifying, rewriting, and recording with decision procedures,

This completes the proof of closed_form.1.

closed_form.2 :

|-------

{1} FORALL (j: nat):

sum(j) = j * (j + 1) / 2 IMPLIES sum(j + 1) = (j + 1) * (j + 1 + 1) / 2

Rule? (skolem!)

Skolemizing,

this simplifies to:

closed_form.2 :

|-------

{1} sum(j!1) = j!1 * (j!1 + 1) / 2 IMPLIES

sum(j!1 + 1) = (j!1 + 1) * (j!1 + 1 + 1) / 2

Rule? (flatten)

Applying disjunctive simplification to flatten sequent,

this simplifies to:

closed_form.2 :

{-1} sum(j!1) = j!1 * (j!1 + 1) / 2

|-------

{1} sum(j!1 + 1) = (j!1 + 1) * (j!1 + 1 + 1) / 2

Rule? (expand "sum" +)

Expanding the definition of sum,

this simplifies to:

closed_form.2 :

14 2.5 Generating LATEX

[-1] sum(j!1) = j!1 * (j!1 + 1) / 2

|-------

{1} 1 + sum(j!1) + j!1 = (2 + j!1 + (j!1 * j!1 + 2 * j!1)) / 2

Rule? (assert)

Simplifying, rewriting, and recording with decision procedures,

This completes the proof of closed_form.2.

Q.E.D.

Run time = 0.81 secs.

Real time = 223.01 secs.

A brief version of the just completed proof can be generated by the command command
M-x show-last-proof.

2.4 Status
Now type M-x status-proof-theory (M-x spt) and you will see a buffer that displays
the three formulas in sum, along with an indication of their proof status. This command is
useful to see which formulas and TCCs still require proofs. Another useful command is M-x
status-proofchain (M-x spc), which analyzes a given proof to determine its dependen-
cies. To use this, go to the sum.pvs buffer, place the cursor on the closed_form theorem,
and enter the command. A buffer will pop up indicating that the proof is complete, and
that it depends on the TCCs and the nat_induction axiom, as well as some definitions and
TCCs provided by the prelude.

2.5 Generating LATEX
In order to try out this section, you must have access to LATEX and a TEX previewer such as
xdvi.

Type M-x latex-theory-view (M-x ltv). You will be prompted for the theory name
to which you should type sum, or just Return if sum is the default. Youwill then be prompted
for the TEX previewer name. Either the previewer must be in your path, or the entire path-
name must be given. This information will only be prompted for once per session, after
which PVS assumes that you want to use the same previewer. You can set the previewer
automatically, by adding the following line to your ~/.pvsemacs file.

(setq pvs-latex-viewer "previewer")

After a few moments the previewer will pop up displaying the sum theory, as shown in
Figure 2.3. Note that * has been translated as × and LAMBDA as 𝜆. These and other transla-
tions are built into PVS; you may also specify translations for keywords and identifiers by
providing a substitution file named pvs-tex.sub, that contains commands to customize the
LATEX output. For example, if the substitution file contains the two lines

2.5 Generating LATEX 15

sum: theory
begin

𝑛: var ℕ

sum(𝑛): recursive ℕ = (if 𝑛 = 0 then 0 else 𝑛 + sum(𝑛 − 1) endif)
measure id

closed_form: theorem sum(𝑛) = (𝑛 × (𝑛 + 1))/2

end sum

Figure 2.3: Theory sum with default translations

sum: Theory
begin

𝑛: var ℕ

∑𝑛
𝑖=0 𝑖: recursive ℕ = (if 𝑛 = 0 then 0 else 𝑛 + ∑𝑛−1

𝑖=0 𝑖 endif)
measure id

closed_form: theorem ∑𝑛
𝑖=0 𝑖 = (𝑛 × (𝑛 + 1))/2

end sum

Figure 2.4: Theory sum with additional translations

THEORY key 7 {\large\textbf{\textrm{Theory}}}

sum 1 2 {\sum_{i = 0}^{#1} i}

the output will look like Figure 2.4. See Section 3.9.4 on page 46 for more details.

16 2.5 Generating LATEX

Chapter 3

PVS Commands

This chapter contains descriptions for all PVS commands; the commands are grouped ac-
cording to function. A summary of the information in this chapter is also provided in the
buffer displayed by the M-x pvs-help command. The information in this chapter is best
absorbed after reading and experimenting with the brief tour provided in Chapter 2.

Each of the following sections begins with a table summarizing the commands discussed
in that section; each table entry gives the full name of the command, available aliases and/or
key bindings, a brief description, and the effect of providing command arguments. Com-
mands are invoked by typing M-x followed by the command name or its abbreviation, or
by using a (less mnemonic) key sequence. For example, the typecheck command can be
invoked by typing M-x typecheck or one of the alternate forms M-x tc or C-c C-t. The
behavior of many of the commands can be modified by providing an argument, and many
of the commands work on regions.1 For example, preceding the typecheck command with
a C-u or M-1 forces the file to be reparsed and typechecked, even if it has already been type-
checked. Each command that takes an argument has a second line prefixed by Arg: that
describes the effect of the argument.

Many PVS commands are appropriate at either the file or theory level; yielding two
different commands. For example, the command for creating a new PVS file is new-pvs-
file, while the command new-theory creates a template for a new theorywithin the current
PVS file. In general, a command foo that applies to both files and theories will have a version
named M-x foo-pvs-file and one named M-x foo-theory.

3.1 Exiting PVS
Command Aliases Function
exit-pvs C-x C-c Terminate PVS session
suspend-pvs C-x C-z Suspend PVS

1See Section 4.9 of [8] for details on providing arguments to commands, and Section 9 for creating and
manipulating regions.

17

18 3.2 Getting Help

The exit-pvs command first saves the context information (see the save-context

command) and then exits PVS. If there is a proof in progress, the system will not exit, but
will instead output a message asking you to exit the prover, thus giving you the opportunity
to save the proof before exiting.

The suspend-pvs command suspends the Emacs process, except under X-windows,
where the command has no effect. The systemfirst askswhether the context should be saved;
if you answer yes the save-context command is invoked prior to suspending PVS. This
may take a while, as the save-context may have to save any number of files, depending
on what has changed in the context. The suspended job can be restarted from the UNIX shell
in which it was suspended by first determining the job number (using the UNIX command
“jobs”) and then typing “fg %𝑛”, where 𝑛 is the job number.2

3.2 Getting Help
Command Aliases Function
help-pvs, pvs-help C-c h Display the PVS help buffer
help-pvs-bnf, pvs-help-bnf C-c C-h b Display the pvs grammar
help-pvs-language, C-c C-h l Display help for the PVS language

pvs-help-language

help-pvs-prover, C-c C-h p Display help for the prover commands
pvs-help-prover

help-pvs-prover-command, C-c C-h c Display help for prover command
pvs-help-prover-command

help-pvs-prover-strategy, C-c C-h s Displays the specified prover strategy
pvs-help-prover-strategy

x-prover-commands Displays the prover commands in a
Tcl/Tk window

help-pvs-prover-emacs, C-c C-h e Display help for prover emacs commands
pvs-help-prover-emacs

pvs-release-notes, C-c C-h r Display PVS release notes

The help-pvs command displays a summary of PVS commands in the PVS Help buffer.
Help may be obtained for an individual command by typing C-h f followed by the com-
mand or its abbreviation, or by typing C-h k followed by the key sequence that invokes
the command. These are built in to Emacs, and may be used to get help for any Emacs
command or key sequence, not just PVS commands.

The help-pvs-bnf command provides the PVS grammar in BNF form, and the help-
pvs-language command displays a summary of the PVS language with examples in the
Language Help buffer.

The help-pvs-prover command displays the documentation string for all of the prover
commands in the Prover Help buffer. The help-pvs-prover-command displays the doc-
umentation string for the specified command, and the help-pvs-prover-strategy com-

2This assumes you are running the csh or tcsh shell. To restart under a shell lacking job control, use the
UNIX command ps to determine the process id (𝑝𝑖𝑑) and then do kill -CONT pid.

3.3 Editing PVS Files 19

mand provides the arguments, definition, format string, and documentation string for the
specified command. The latter is useful for finding out exactly what a strategy does, or
for defining your own strategies based on existing ones. If you are running under the X
window system, x-prover-commands provides an easy interface to get help for individual
prover commands.

The help-pvs-prover-emacs command displays a summary of the commands that pro-
vide a convenient Emacs interface to the PVS prover. This is discussed in more detail in
Section 3.5.7, page 35. The help text appears in the Prover Emacs Help buffer.

The pvs-release-notes command displays the release notes for the running version
of PVS. The text appears in the PVS Release Notes buffer.

3.3 Editing PVS Files
Command Aliases Function
forward-theory M-} Move forward to beginning of next theory
backward-theory M-{ Move backward to beginning of previous theory
find-unbalanced-pvs C-c] Find unbalanced delimiters
comment-region C-c ; Comment out all lines in the current region

Arg: Uncomment all lines in the current region

PVS specification files are edited using the standard Emacs editing commands. Ap-
pendix B, page 83 gives a brief introduction to the most useful Emacs commands for editing
PVS files.

The forward-theory and backward-theory commands are used to move to different
theories within a single PVS file. The cursor is moved to the beginning of a theory; if there
are no preceding or following theories to move to, the message “No more theories” or
“No earlier theories” is displayed and the cursor remains unchanged.

The find-unbalanced-pvs command checks whether there are any unbalanced paren-
theses (()), square brackets ([]), curly braces ({ }), or BEGIN-END pairs. If none are
found, the message “All delimiters balance” is displayed. Otherwise the cursor is left
at the token for which there is no match and a corresponding message is displayed.

The comment-region command inserts the comment character (%) at the beginning of
every line in the specified region. To uncomment a region, simply provide an argument to
the command, and all commented lines within the region will be uncommented.

3.4 Parsing and Typechecking

3.4.1 Parsing
Command Aliases Function
parse pa Parse file in current buffer

Arg: Forces the file to be reparsed

20 3.4 Parsing and Typechecking

Parsing a PVS specification accomplishes two things: first, it checks that the specifica-
tion is syntactically correct, i.e., satisfies the PVS grammar, and second, it builds the internal
abstract grammar data structures. The parse command is not normally used, as typecheck-
ing will automatically parse the file if required. Note that only files (with extension .pvs)
may be parsed. When a file is parsed, it becomes a part of the context if it wasn’t already,
and any proofs that have been saved for the file are reinstated. If the file being parsed has a
valid .bin file, then this file is loaded instead (this will result in the file being typechecked
as well as parsed).

Parsing is invoked by moving the cursor to a buffer containing a file in the current con-
text, and issuing the parse command. While parsing the file, the minibuffer displays the
message “Parsing foo.” If there is no error, the message “foo parsed in # seconds” is
displayed. If the file has not changed since the last time it was parsed, the message “foo is

already parsed” is displayed. To force reparsing, provide an argument to the parse com-
mand. Note that the argument is usually not needed, as changes to the file are automatically
detected by the system and the file is reparsed in that case.

When an error is detected, the file is displayed with the cursor at the location where the
error was detected, which is frequently after the actual source of the error. In addition, the
PVS Error buffer is displayed with an explanatory error message. You may need to consult
the language manual for details on the grammar.

Certain language features may result in the parser producing theory messages. See the
show-theory-messages command (page 22) for details.

3.4.2 Typechecking
Command Aliases Function
typecheck tc, C-c C-t Typecheck theories in current buffer

Arg: Force reparsing and retypechecking
typecheck-importchain tci Typecheck importchain of theories

Arg: Force reparsing and retypechecking
typecheck-prove tcp Typecheck theories, proving TCCs

Arg: Force reparsing and retypechecking
typecheck-prove-importchain tcpi Typecheck importchain of theories,

proving TCCs
Arg: Force reparsing and retypechecking

Typechecking a PVS specification checks semantic constraints, determines the types of
expressions, and resolves names (see the language manual [3]). Typechecking is invoked
much like parsing, and automatically parses the file if necessary. Errors are indicated in the
same manner as for parsing, although the cursor is usually more accurately positioned at
the error. As in parsing, an argument to the command forces reparsing and retypechecking.
Without the argument, typecheck and typecheck-importchain are the same. With the
argument, typecheck only reparses and retypechecks the current file, while typecheck-

importchain forces reparsing and retypechecking of the entire import chain of the theories
of the current file.

3.4 Parsing and Typechecking 21

Forcing a file to be retypechecked is done primarily for development and debugging, as
is the case for reparsing. If you have typechecked a set of PVS files, made some changes
and found an error on retypechecking that shouldn’t have occurred, try forcing a typecheck
of the file where the error occurred. If that doesn’t help, try forcing with typecheck-

importchain. The error should disappear after that, unless it is a true typecheck error.
If it is not a simple typecheck error, send a bug report to pvs-bugs@csl.sri.com.

The typecheckerwill automatically attempt to typecheck any theories appearing in IMPORTING
clauses. If the theories appear in the current context, then the associated file is typechecked,
otherwise PVS tries to find a file with the same name as the theory. For example, in type-
checking

IMPORTING foo[int]

the current context (reflected in the context file .pvscontext) is searched for a file known
to contain theory foo. If no such file is found, then the file foo.pvs is sought. If that also
cannot be found, the system complains and the desired file must be manually located (or
created) and typechecked.

The typecheck-prove command typechecks the file, and then attempts to prove the
generated TCCs. If the file is already typechecked, but the TCC proofs have not yet been at-
tempted, then they are attempted in the order they were generated. The TCC proof attempts
are made with built-in prover strategies (selected according to the type of TCC generated).
These strategies basically expand all definitions in the TCC, and repeatedly skolemize, per-
form heuristic instantiation, lift IFs, and invoke the decision procedures.3 As explained in
the prover guide, you may redefine the tcc strategies; usually to extend their capabilities.

The typecheck-prove-importchain command typechecks the file, and attempts to
prove the TCCs of all the theories on the import chain that have not already been attempted.
Providing an argument forces the retypechecking of the import chain.

The typecheck-prove commands can take some time, especially if there are a lot of
TCCs. This can be controlled in a number of ways:

Use these commands sparingly. Our experience is that TCCs should be analyzed when-
ever a new specification is created, significantly modified, or is nearing completion.
At these times it pays to use the typecheck-prove command and to look at the TCCs
that weren’t subsequently proved, and check that they at least seem provable. After
minor changes, we find it best to use just typecheck and defer consideration of the
TCCs until later.

Define your own TCC strategy. The prover guide describes techniques for defining your
own strategies, and you may change existing ones, such as the tcc strategy to be more
efficient for your particular specifications. Changing the tcc strategy should probably
be done in the pvs-strategies file in the current context, especially if it is tailored
to the specifications in that context.

3The TCC strategies are variants of a powerful strategy called (grind), which is useful for more than just
TCCs.

22 3.5 Proving

Use judgements to cut down on the number of TCCs. The languagemanual describes how
to do this.

Use NONEMPTY_TYPE or CONTAINING in type declarations This is also described in the lan-
guage manual.

When typechecking is completed, a message is displayed, indicating the total number of
TCCs generated along with a breakdown of the number proved, subsumed4, and unproved.

3.4.3 Typechecking Information
Command Aliases Function
show-theory-warnings Show typechecker warnings for the given theory
show-pvs-file-warnings Show typechecker warnings for the given file
show-theory-messages Show typechecker messages for the given theory
show-pvs-file-messages Show typechecker messagess for the given file
show-theory-conversions Show conversions for the given theory
show-pvs-file-conversions Show conversions for the given file

In the process of typechecking a specification, various warnings and informative mes-
sages may be produced. These are associated with the theory that produced them, and saved
so they may be perused. Warnings may indicate a possible problem. For example, if the
typechecker cannot determine that a datatype is nonempty, it produces a warning. There
is nothing wrong with having an empty datatype, but if at some point it isn’t proved to be
nonempty, a lot of time may be wasted proving formulas that are vacuously true. Informa-
tive messages do not indicate anything is wrong, but the information may be of interest. For
example, using the TYPE+ keyword generates an existence axiom, and this is treated as an
informative message.

Conversion messages5 have been separated out of the warnings. Conversions may be
applied to make an expression type correct. This is not always what the user intended, so
the show conversions commands are provided to make it easy to look at the conversions that
have been applied.

Note that typechecking not only reports the number of TCCs generated, but also the
generation of anywarnings, messages, and conversions. While in the prover, thesemessages
are generated interactively.

3.5 Proving
The prover is described in full in the prover guide [7], here we describe the Emacs interface
to the prover, including commands for invoking the prover, editing and rerunning proofs,

4A TCC is subsumed if there is an earlier TCC which implies it. PVS uses a simple syntactic test, so not
all possible subsumptions will be determined.

5See the Language Guide[3] for details of conversions.

3.5 Proving 23

displaying proof information, some useful keyboard shortcuts for the prover, and managing
multiple proofs.

The prover may be applied to a single formula, all formulas in a theory, all formulas in
the import chain of a theory, all formulas in a PVS file, or all formulas in the proof chain
of a given formula. Only the prove, x-prove, step-proof and x-step-proof commands
lead to prover interaction; the other commands simply rerun proof scripts that have been
previously generated.

PVS keeps track of the status of formulas within and across sessions. The status may be
one of four values; “untried” means that no proof has been attempted, “proved” means that
the proof has been completed, “unchecked” means that a proof has been completed, but that
the specification has been modified since the proof attempt, and “unfinished” means that a
proof has been attempted, but not yet completed. Formulas labelled as “proved” will be
“complete” or “incomplete”. The status is only “complete” when all formulas (including
TCCs) upon which the proof is dependent have been completed.

Modifying a specification causes the proof status of all proved formulas to revert to
“unchecked,” although the proof scripts are retained.6

3.5.1 Proving a Single Formula
Command Aliases Function
prove pr, C-c p Prove formula pointed to by cursor
x-prove xpr, C-c C-p x Start proof along with X display
step-proof prs, C-c C-p s Set up proof stepper for current formula
x-step-proof xsp, C-c C-p X Combines x-prove and step-proof

redo-proof prr C-c C-p r Redo the proof of formula at cursor
Arg: don’t display the proof

prove-next-unproved-formula

prnext, C-c C-p n Start proof on next unproved formula

To invoke the prover on a single formula, move the cursor to any part of the desired
formula and type the prove command. The formula may be in a PVS file, a buffer generated
by the prettyprint-expanded command (with extension .ppe), a buffer generated by the
show-tccs command (with extension .tccs), or a prelude buffer produced by one of the
view-prelude commands.7 If the formula has already been proved, then you will be asked
whether the proof should be retried; a no answer ends the prove command. Otherwise, if
the formula has an associated proof script, you will be asked whether to rerun the proof or
start over. In either of these two cases, the proof is displayed in the *pvs* buffer. If the
proof script terminates before completing the proof or if no script was requested, the prover
will prompt for a command, which should be typed directly into the *pvs* buffer at the

6PVS currently tracks the consequences of changes rather coarsely: any change in a file reverts all the
proofs in that file, and all those in theories that depend on that file (and so on, transitively) to the “unchecked”
state.

7Of course, the prelude formulas have already been proved; this facility allows you to explore the proofs.

24 3.5 Proving

Rule? prompt.8 At this point you are interacting with the prover, and certain commands
will be unavailable until the prover is exited.9

The x-prove command is exactly like the prove command, except that it also pops up
a window in which the proof tree is represented graphically. See section 3.11, page 50 for
more details. If you are not running under X windows, then a warning message will be
displayed and the command will be treated as a prove command.

The step-proof command is used to initiate the proof stepper, and is invoked in the
same way as the prove command. Two buffers are displayed, one showing the sequent (the
pvs buffer) and the other showing the proof script associated with the formula, if any (the
Proof buffer). Section 3.5.10, page 38 explains how to use the proof stepper.

The x-step-proof command combines the x-prove and step-proof commands.
The prove-next-unproved-formula command invokes the prover on the next un-

proved formula at or beyond the current cursor position. If the formula already has a proof,
you will be asked whether to go ahead and run it or to start anew. Note that starting a new
proof will not delete the old proof unless you allow the prover to overwrite it at the end of
the proof session.

The redo-proof command is invoked exactly like the prove command, but simply re-
runs the proof with no questions asked. An error is signaled if the indicated formula has
no associated proof. In addition, if an argument is provided, the proof will not be displayed
interactively—instead the proof is processed in the background, and the status of the proof
is provided in the minibuffer when the attempt is completed.

The prover exits automatically when a proof is successfully completed. If at any time
you want to exit the prover, go to the bottom of the *pvs* buffer10 and type (quit) to
the Rule? prompt. If there is no such prompt, type C-c C-c and (restore) to get to the
prompt. Once the prover is exited, control is returned to the buffer from which the prover
was invoked, with the cursor positioned at the beginning of the formula being proved. Do
not kill the *pvs* buffer, as this will also kill the associated PVS process.

8The system tries to keep as much of the proof visible as possible by redisplaying the screen so that the
Rule? prompt is at the bottom of the window. This feature is not always desirable (e.g., over a slow modem
connection), and may be turned off by setting the Emacs variable *pvs-maximize-proof-display* to nil.

9 Specifically, the commands parse, typecheck, prove, change-context, exit-pvs, and all of the prove
commands of this section are unavailable while the prover is active.

10While in the prover you may freely move around in the *pvs* buffer or move to any other buffer to
examine specifications or perform ordinary editing functions.

3.5 Proving 25

3.5.2 Proving Sets of Formulas
Command Aliases Function
prove-theory prt, C-c C-p t Rerun unproved proofs in theory

Arg: include those already proved
prove-theories Rerun proofs in specified theories

Arg: include those already proved
prove-pvs-file Rerun unproved proofs in current file

prf, C-c C-p f Arg: include those already proved
prove-importchain Rerun prove-theory on IMPORT chain

pri, C-c C-p i Arg: include those already proved
prove-importchain-subtree Rerun prove-theory on specified subtree

pris of IMPORT chain
Arg: include those already proved

prove-proofchain Rerun proofs on formulas in proofchain
prp, C-c C-p p Arg: include those already proved

prove-formulas-theory Try unproved formulas with specified strategy
prft Arg: attempt proved formulas as well

prove-formulas-pvs-file Try unproved formulas with specified strategy
prff, C-c C-p U Arg: attempt proved formulas as well

prove-formulas-importchain Try unproved formulas with specified strategy
prfi Arg: attempt proved formulas as well

prove-formulas-importchain-subtree Try unproved formulas with specified strategy
prfs Arg: attempt proved formulas as well

prove-tccs-theory Try unproved TCCs with specified strategy
prft Arg: attempt proved TCCs as well

prove-tccs-pvs-file Try unproved TCCs with specified strategy
prff, C-c C-p U Arg: attempt proved TCCs as well

prove-tccs-importchain Try unproved TCCs with specified strategy
prfi Arg: attempt proved TCCs as well

prove-tccs-importchain-subtree Try unproved TCCs with specified strategy
prfs Arg: attempt proved TCCs as well

prove-untried-theory Try untried proofs with specified strategy
prut, C-c C-p u Arg: attempt TCCs as well

prove-untried-pvs-file Try untried proofs with specified strategy
pruf, C-c C-p U Arg: attempt TCCs as well

prove-untried-importchain Try untried proofs with specified strategy
prui Arg: attempt TCCs as well

prove-untried-importchain-subtree Try untried proofs with specified strategy
prus Arg: attempt TCCs as well

Proof scripts can be rerun using the prove-theory, prove-pvs-file, prove-importchain,
prove-importchain-subtree and prove-proofchain commands, which simply rerun the
proof scripts, if any, for all of the formulas of the theory, its PVS file, import chain, import
chain subtree, or proof chain, respectively. The import chain of a theory is simply the
transitive closure of the IMPORTINGs including those implicit in a theory declaration. The
prove-importchain-subtree command takes additional theory name arguments and ex-
cludes these theories and their subtree from the importchain. The proof chain of a given
formula is the transitive closure of the formulas used in the proof of that formula. These
commands skip formulas that have no proof scripts, and normally skip formulas which al-

26 3.5 Proving

ready have status “proved;” providing an argument to the command forces PVS to reprove
all formulas that have proof scripts. When any of these commands finish processing, the
corresponding proof status command is automatically invoked to display the results (see
Section 3.16).

The prove-theories command prompts for theory names (with completion) one at a
time, until an empty theory name is provided, and then runs prove-theory on each of these.

The commands prove-formulas-theory, prove-formulas-pvs-file, prove-formulas-
importchain, prove-formulas-importchain-subtree prove-tccs-theory, prove-tccs-
pvs-file, prove-tccs-importchain, and prove-tccs-importchain-subtree prove-

untried-theory, prove-untried-pvs-file, prove-untried-importchain, and prove-
untried-importchain-subtree are all similar, but allow a given strategy to be applied to
all applicable formulas.

For the prove-formulas commands, all unproved formulas that are not TCCs or ax-
ioms or postulates are attempted with the provided strategy, which defaults to (grind).
The prove-tccs commands are similar, but only attempt unproved TCCs, and the default
strategy is (tcc). With an argument, the already proved formulas are also attempted. If a
given proof attempt succeeds, then it replaces any existing proof. If it fails and the given
formula already has a proof, then the original proof is kept. Otherwise the new proof is
associated with the formula. Thus after these commands all attempted formulas will have
proofs associated with them. The strategy is any acceptable single prover command, as in
the following example.

(then (grind :if-match nil) (inst?) (grind))

The prove-untried commands are similar, but they only affect formulas that have no
associated proof, and providing an argument attempts TCCs that have no proofs as well. To
apply a strategy to just the untried TCCs, redefine the tcc in your pvs-strategies Note
that after any of these commands, all attempted formulas will have associated proofs, so
issuing the same command with a different strategy will have no effect.

3.5 Proving 27

3.5.3 Selecting Decision Procedures
Command Function
set-decision-procedure

Set the default decision procedure
prove-theory-using-default-dp

Rerun unproved proofs in specified theory using default decision procedures
Arg: include those already proved

prove-theories-using-default-dp

Rerun proofs in specified theories using default decision procedures
Arg: include those already proved

prove-pvs-file-using-default-dp

Rerun unproved proofs in current file using default decision procedures
Arg: include those already proved

prove-importchain-using-default-dp

Rerun prove-theory on IMPORT chain using default decision procedures
Arg: include those already proved

prove-importchain-subtree-using-default-dp

Rerun prove-theory on subtree of IMPORT chain using default dec. procedures
Arg: include those already proved

prove-proofchain-using-default-dp

Rerun proofs on all formulas in proof chain using default decision procedures
Arg: include those already proved

These commands have no effect if PVS was invoked with the -force-decision-procedures
switch; see Section 4.1

The currently available decision procedures are shostak and ics. Much of the prover
was built around the Shostak decision procedure,11 ICS is a new decision procedure that can
be run stand alone or included as a library. See http://ics.csl.sri.com for more. The
prover manual discusses how the decision procedures are used; here we simply describe the
commands for selecting them.

The decision procedure interface provides a set of methods that make it easy to add new
decision procedures, as long as they satisfy the basic API. When a new decision procedure
is added, it’s name is made available to be used as a decision procedure.

The set-decision-procedure command sets the default decision procedure to be used
in subsequent proofs. When a single formula is attempted that doesn’t have a proof, the de-
fault decision procedure is automatically used. If it already has a proof that was developed
using a different decision procedure, the prover prompts for whether to use the default or
stay with the original decision procedure. When a proof is saved, the decision procedure
used during the proof is saved as well. For the prover commands such as prove-theory, the
proofs are each attempted with the decision procedure they were developed with. The re-
maining commands allow existing proofs to be rerun using the default decision procedures,
and otherwise behave exactly as the similarly named commands defined in the previous
section.

Note that setting the decision procedure does not affect an ongoing proof. The decision
11This was developed by Rob Shostak in the late 70s. Since then it has undergone many refinements.

http://ics.csl.sri.com

28 3.5 Proving

procedures generally have different ways of storing state and processing it, and a proof
may only be run with a single decision procedure. However, the decision procedure API is
flexible enough to allow methods to be defined that, for example, run two different decision
procedures in parallel and compare their results, or spawn two subprocesses and use the
result of the first one to finish.

3.5.4 Editing and Viewing Proofs
Command Aliases Function
edit-proof show-proof Edit the proof of the indicated formula
install-proof C-c C-i Install proof on the indicated formula
install-and-step-proof C-c s Install proof on a formula and step
install-and-x-step-proof C-c x Install proof on formula, display, and step
remove-proof Remove proof associated with a formula
show-proof-file Edit the proofs of the indicated PVS file
show-orphaned-proofs Edit the orphaned proofs
show-proofs-theory Show all proofs of a theory
show-proofs-pvs-file Show all the proofs of a PVS file
show-proofs-importchain Show all proofs of importchain of a theory
install-pvs-proof-file Installs proof file for typechecked theory
display-proofs-formula Display the (multiple) proofs associated with this formula
display-proofs-theory Display the (multiple) proofs of the formulas in the theory
display-proofs-pvs-file Display the (multiple) proofs of the formulas in the PVS file
load-pvs-strategies Loads a pvs-strategies file
set-print-depth Sets print depth for printing sequents
set-print-length Sets print length for printing sequents
set-print-lines Sets number of lines to print

for each sequent formula
set-rewrite-depth Sets the print depth for rewrite messages
set-rewrite-length Sets the print length for rewrite messages
dump-sequents Save unproved sequents to a file
toggle-proof-prettyprinting Toggles the prettyprinting of proof files

Every formula of a specification for which a proof has been attempted has an associ-
ated proof script that reflects the commands used during the proof attempt. Proof scripts
may be edited using the edit-proof command. This command is invoked on the formula
declaration at the cursor; the formula may occur in a specification buffer (with extension
.pvs), a prettyprint-expanded buffer (with extension .ppe), a show-tccs buffer (with ex-
tension .tccs), or a buffer generated by one of the view-prelude commands. When the
edit-proof command is invoked, it creates a buffer with the name Proof containing the rel-
evant proof script,12 which may then be edited using the standard Emacs editing commands.
Editing proof scripts is a convenient way to handle modifications made to a specification,
and allows the same proof script to be revised and used for many similar formulas. The
Proof buffer normally persists until the next time the edit-proof command is invoked,
allowing the same proof script to be attached to different formulas using install-proof.

12If the formula has no proof script, an empty Proof buffer is created.

3.5 Proving 29

A proof script records a tree of prover commands that will generate a proof of the given
formula. Although the proof tree does not record verbatim the commands originally typed
to the prover, the proof script should be easy to understand. For example, the Proof buffer
of the formula closed_form in the sum example would contain

;;; Proof for formula sum.closed_form

;;; developed with old decision procedures

(""

(INDUCT "n")

(("1" (EXPAND "sum") (ASSERT))

("2" (SKOLEM!) (FLATTEN) (EXPAND "sum" +) (ASSERT))))

When editing is complete, the proof script may be attached either to the original, or to
a different formula using the install-proof command. If this command is invoked in the
Proof buffer, it attaches the new proof script to the original formula and offers to rerun the
proof. The proof script may also be attached to any other formula by invoking install-

proof in a .pvs, .ppe, or .tccs buffer, in which case the script is attached to the formula
at the cursor. In each case, the new proof only becomes the default, the old proofs are still
available and may be manipulated by means of the display-proofs-formula command,
which allows the default proof to be reset. If no proof is being edited (i.e., there is no Proof
buffer), an error is reported.

The proof may also be installed using the install-and-step-proof or install-and-
x-step-proof commands, both of which install the proof and initiate the proof stepper; the
latter also displays the proof tree.

Checkpoints may be added to the Proof buffer obtained by the edit-proof command.
To add a checkpoint, position the cursor and type C-c a. The checkpoint is indicated by a
double exclamation point (!!). Any number of checkpoints may be added. When the proof
is installed using C-c C-i, these are changed to the checkpoint proof rule, and branches
of the proof that do not have a checkpoint on them are wrapped in a just-install-proof
proof rule. When this proof is rerun, it will run until it hits a checkpoint, and then prompt
for a prover command. When it hits a just-install-proof, it simply installs the given
commands and marks that branch as proved. This allows the prover to quickly get to the
next checkpoint, without attempting to reprove branches that do not have checkpoints in
them. When a proof that has just-install-proof rules in it is finished, the prover asks
whether the proof should be rerun, as the formula will not be considered proved until the
proof is rerun.

To remove a checkpoint from the Proof buffer, position the cursor at the checkpoint and
type C-c r. To remove all checkpoints, type C-c DEL.

In addition to the above, the key bindings for browsing and the prover emacs (tab)
commands are available in a Proof buffer.

The remove-proof command is used to remove the proof associated with the specified
formula. The primary use for this is to remove proofs from axioms for which a proof attempt
has been made.

30 3.5 Proving

If a proof is in progress, proofs may still be edited, but the prover must be exited before
the edited proof may be attached to a formula. Note that invoking edit-proof on the for-
mula currently being proved will display the proof script stored with the formula, if there is
one. To display the current proof script, use the show-current-proof command described
below.

As noted above, each specification file (with extension .pvs) has an associated proof
file of the same name with a .prf extension. This file contains the proof scripts for all of
the formulas of the specification file whose proofs have been attempted. The show-proof-
file command allows you to browse a proof file, and select or view any of the associated
proof scripts. A Proofs File buffer is created with a line for each proof script in the file.
You may select a proof script for editing, or simply view the script in a pop-up buffer. This
command may be used to look at the proof file of any context or PVS file—in this respect
it is analogous to the import-pvs-file command.

To view a proof script, place the cursor on the desired line, and type “v.” The proof
script will be displayed in a pop-up buffer, but may not be edited. To edit a proof script,
position the cursor and type “s.” This will create or use the Proof buffer which may be
edited and attached to formulas exactly as described above.

While developing a specification, some theorems or even entire theories may be moved
around or deleted, creating orphaned proofs. Orphaned proofs are saved in the orphaned-
proofs.prf file. In some cases, the system will recognize that an orphaned proof should
be reattached to a formula, and will ask whether it should go ahead.

The show-orphaned-proofs command provides access to the orphaned proofs file by
means of an Orphaned Proofs buffer that displays the formula name, theory name, and file
name associated with each orphaned proof. A given proof may be selected by moving the
cursor to the line and typing “s,” which pops up the Proof buffer. This buffer is the same
as the one generated by the edit-proof command, except that there is no default formula,
so that install-proof (C-c C-i) will not work from the Proof buffer. Typing a “d” on a
proof line deletes the corresponding entry from the orphaned proof file, typing a “v” pops
up a View Proof buffer, and typing a “q” exits the orphaned proof buffer.

The commands show-proofs-theory, show-proofs-pvs-file, and showproofs-importchain
display all of the proofs of the associated theory, PVS file, or importchain in a buffer named
Show Proofs, which is in PVS View mode.

The install-pvs-proof-file command prompts for a PVS file name, and reads in
the corresponding proof file, replacing any proofs that may have been loaded or developed.
This command is needed in order to get a new proof file accepted in a context. When
specification files are parsed and/or typechecked, the corresponding proof files are read in.
After that the system will not pay any attention to changes made to the proof file, but simply
update it as changes are made that affect proof status. This command allows you to modify
the file or copy a new one in and get it installed.

The load-pvs-strategies command loads the strategies files from your home direc-
tory, imported libraries, and the current context. This command is only needed when a
new strategy is being developed during a proof; when a proof is started the system checks

3.5 Proving 31

whether any of the strategy files have changed and automatically loads them if they have.
See the prover guide [7] for details on the contents of the pvs-strategies files.

The set-print-depth, set-print-length, and set-print-lines commands control
how much of an expression is displayed in a sequent. If the print depth and length are set
to 0 and the lines is NIL, then the entire sequent is displayed. This is the default. If the
depth is set to a positive integer, then any subterms at that depth are replaced by a pound
sign (#). Similarly, if the length is set to a positive integer, then any subterms beyond the
specified length are replaced by three periods (...). The length and depth of an expression
are not easy to define, because it is related to the abstract syntax used by the prettyprinter.
In general, expressions separated by commas have a length, while subterms13 are deeper
by one than the containing terms. If the print lines is set to a number 𝑛, then only the first
𝑛 lines of each formula of the sequent is displayed, and remaining lines are replaced by
two periods (..). Note that all these commands are also rules in the prover that otherwise
behave as a SKIP, so it is easy to adjust the printout interactively.

The set-rewrite-depth and set-rewrite-length commands control how much in-
formation to output when printing the results of automatic rewrites. Normally, both the rule
name and the expression being rewritten are displayed in the proof commentary when an
auto-rewrite is triggered. The value should be a positive number or NIL. If it is a positive
number, then any subexpression at that depth or length will be replaced by a pair of peri-
ods (..) or three periods (...) respectively. If it is 0 (zero), then only the rule name is
displayed. If it is NIL, then there is no bound.

The dump-sequents command indicates that any incomplete proof attempt should save
the remaining unproved sequents to file. If the proof is for formula foo from theory th,
then the file containing the unproved sequents is named th-foo.sequents. If the formula
is proved, then no file is generated, and any file left from an earlier attempt on this formula
is removed.

The toggle-proof-prettyprinting command toggleswhether to prettyprint the proof
file (with extension .prf) associated with a PVS file. Prettyprinted files are easier to read,
edit, and email, but they take a lot longer to generate. By default, proof files are pret-
typrinted.

The commands for exhibiting proofs can get confusing. To summarize, only the display-
proofs- commands support multiple proofs, while the others just show the default proofs.
The show-proof-file and show-orphaned-proofs commands provide listings that are
similar to those produced by the display-proofs- commands, but

13For example, the operator and arguments are subterms of an application.

32 3.5 Proving

3.5.5 Displaying Proof Information
Command Function
show-current-proof Display the current proof
show-last-proof Displays printout of most recent proof

Arg: make it brief
set-proof-backup-number Set number of backup proof files to retain

Arg: number of files to retain
show-proof-backup-number Show number of backup proof files retained
ancestry Display the ancestry of the current sequent
siblings Display the siblings of the current sequent
show-hidden-formulas Display the hidden formulas in the current sequent
show-auto-rewrites Display the currently used auto-rewrite rules
show-expanded-sequent Display the sequent in expanded form

Arg: also expand names from the prelude
show-skolem-constants Display the Skolem constants and their types
explain-tcc Display the explanation for a TCC
usedby-proofs Display formulas whose proofs refer to the

declaration at the cursor
pvs-set-proof-parens Control parentheses display in proofs
pvs-set-proof-prompt-behavior Indicates the kind of prompting at the end of a proof; one of :ask, :overwrite, or :new
pvs-set-proof-default-descriptionSets a default description string for saved proofs

These commands work only while an interactive proof is being developed, i.e., after
the prove command. The show-current-proof command shows the current proof in the
Proof buffer in the same format as the edit-proof command, but the displayed proof
may not be edited. The primary use of this facility is for reviewing the development of a
proof in progress and applying parts of it to other branches using the rerun prover command,
as described in the prover guide[7].

The show-last-proof command provides a display of the commentary and subgoals
associated with the most recently completed proof in the Proof Display buffer. This ver-
sion does not contain the undo, skip, or postpone steps and provides a clean version that
shows the commentary and subgoals. This printout is useful in trying to summarize the
proof for publication. With an argument, many of the sequents are suppressed, and within
a sequent, formulas which haven’t changed since the previous sequent display are elided.

The set-proof-backup-number command indicates the number of backups to be kept
for proof files. If the argument is 0, then no backups are kept. If it is 1, then before the .prf
file is written, the old copy is retained with extension .prf~. For larger arguments, that
number of old .prf files are retained with the extension .prf.~x~, with increasing values
of x. For example, if the argument is 3, and backup files foo.prf.~3~, foo.prf.~4~,
and foo.prf.~5~ exist, when the next backup is created foo.prf.~3~ is removed and
foo.prf.~6~ is created. The default value is 1, and PVS will revert to this behaviour on
each invocation. Thus, it is recommended that this command be placed in the file .pvsemacs
in your home directory, e.g.:

(set-proof-backup-number 5)

3.5 Proving 33

The current number of proof files being retained is reported by the showproof-backup-

number command.
The ancestry command displays the branch of the proof from the root to the current

sequent in the Ancestry buffer, and the siblings command displays the siblings of the
current sequent in the Siblings buffer, where the siblings are those sequents of the proof
tree which share the same parent.

The show-hidden-formulas command displays the formulas that have been hidden in
the current branch of the proof. These formulas are displayed in the Hidden buffer. Each
formula is displayed with a number whichmay be referred to in the reveal prover command
(see the prover guide [7]).

The show-auto-rewrites command displays the auto-rewrite rules that are in effect
for the current sequent. The rules are displayed in the *Auto-Rewrites* buffer, in reverse
of the order in which they were introduced i.e., the most recently introduced ones first. The
order is significant since if there is a clash and two or more rewrite rules are applicable, the
most recently introduced one is applied first.

The show-expanded-sequent command displays the current sequent in the Expanded
Sequent buffer, with each variable, constant and operator expanded to its full type, includ-
ing the theory and its parameters, unless they are from the current theory or the prelude.
With an argument, prelude names are also expanded. show-skolem-constants displays the
type of all skolem constants introduced in the current proof in the Proof Display buffer.
Normally names from the prelude are not expanded, an argument expands these as well.

A TCC subgoal is marked as such in a proof. Invoking the explain-tcc command
provides some explanation for why the TCC was generated, giving the type of TCC, and the
expression which caused its generation.

The usedby-proof command provides a list of formulas whose proofs refer to the given
declaration. This works by looking through the formulas of all the currently typechecked
theories of the current context; in particular, for prelude or library declarations it will not
locate all formulas that ever referred to the declaration, as this information would be difficult
to maintain and be of marginal use. The buffer generated by the usedby-proof command
is the same as that for the find-declaration command, with the same key-bindings for
viewing and going to the listed declarations.

The pvs-set-proof-parens command asks whether to show parentheses, and if so,
sets a variable indicating that sequents should be displayed with full parenthesization. This
is mostly useful for proofs involving large arithmetic terms, where it may otherwise be
difficult to figure out whether a given rewrite rule should apply.

The introduction of multiple proofs changed the way PVS handles the end of a proof
session. When a proof attempt is ended, either by quitting or successfully completing the
proof, the proof is checked for changes. If any changes have occured, the user is queried
about whether to save the proof, andwhether to overwrite the current proof or to create a new
one. If a new proof is created, the user is prompted for a proof identifier and a description.
At the end of any given proof a number of questions may be asked:

• Would you like the proof to be saved?

34 3.5 Proving

• Would you like to overwrite the current proof?

• Please enter an id

• Please enter a description:

The pvs-set-proof-prompt-behavior command allows you to control this behavior.

The possible values for the prompt behavior are:
:ask the default; all four questions are asked
:overwrite similar to earlier PVS versions; asks if the proof should be saved and then simply overwrites the earlier one
:add asks if the proof should be saved, then creates a new proof with a generated id and empty description.

The pvs-set-proof-default-description command allows you to set a default descrip-
tion string. It is used if the prompt is anything but :ask, or if the empty string (i.e., just
hitting Return) is provided when a description is asked for. It defaults to the empty string.

3.5.6 Adding and Modifying Declarations
Command Aliases Function
add-declaration Add declarations to a PVS theory
modify-declaration Modify the indicated declaration body

Declarations are normally added and modified directly in a specification buffer; the sys-
tem determines the differences and updates the corresponding internal structures accord-
ingly. This can be quite expensive, as any theories which import a modified theory must
be retypechecked. However, there are two commands that allow declarations to be added
and modified without causing retypechecking. This is especially important during proof
development, when these commands allow you to make adjustments to theories precisely
when the need for such an adjustment is discovered.

The add-declaration command inserts new declarations before the declaration at the
cursor. When invoked, it pops up an empty buffer named Add Declaration. Declarations
may be typed in and edited just as in a specification buffer. When editing is completed,
the new declarations may be installed by typing C-c C-c. The new declarations are parsed,
typechecked, and checked for uniqueness; if an error is discovered it is reported in the usual
way. If there is no error, the declarations are inserted above the declaration located at the
cursor when the add-declaration command was invoked. If a proof is in progress, it will
have access to the new declarations if they are visible, i.e., exported,14 declarations of a
theory used by the theory whose formula is being proved, or they occur in the same theory
and precede the formula being proved.

The modify-declaration command is used to modify the body of a constant or for-
mula declaration; modifying the signature of a constant or any other kind of declaration is
not permitted because these modifications have potentially non-local ramifications. This
command is similar to the add-declaration command: the Modify Declaration buffer
pops up containing the declaration at the cursor, and the modified declaration is installed

14See the Language Reference for a definition of exported declarations. In short, formal parameters and
variable declarations may never be exported, and, by default, everything else is exported.

3.5 Proving 35

by typing C-c C-c. If the modified declaration typechecks and maintains the same id and
signature, it is installed in the theory and is immediately available for use in a proof. Oth-
erwise the cursor is placed in the vicinity of the error and a message is displayed indicating
the nature of the error.

Both add-declaration and modify-declaration update the buffer containing the af-
fected theory and mark the buffer as unchanged; the system considers the affected theory
typechecked. However, the checks cannot guarantee that everything is sound; for example,
any proofs done using a declaration that was later modified will need to be reproved, and
any theory which uses a theory to which declarations have been added should eventually be
retypechecked, as ambiguities may have inadvertently been introduced. Thus these com-
mands should be viewed as a convenient way to explore proofs; they should not be used
in the “validation” phase of the verification. Proofs constructed when either of these com-
mands is successfully used are marked unchecked; i.e., the proofs will need to be rerun to
change their status to proved.

3.5.7 Prover Emacs Commands
The prover commands can be somewhat tedious to type in, especially the simple ones that
are used regularly, such as assert, grind and skosimp*. C. Michael Holloway of NASA
Langley created an extension to Emacs to relieve some of the tedium, and was kind enough
to make these extensions available to PVS. This section describes those extensions in three
subsections: General Commands, Prover Commands, and Proof Stepper Commands.

3.5.8 General Commands
Command Aliases Function
pvs-prover-any-command TAB TAB Insert (prompted for) command
pvs-prover-quotes TAB '

pvs-prover-wrap-with-parens TAB C-j

The pvs-prover-any-command prompts for a command (with completion), and inserts
it in the prover buffer with the cursor positioned for additional arguments. This command
is provided for those prover commands that do not have an Emacs key binding associated
with them.

The pvs-prover-quotes command makes it easier to give PVS types and expressions,
by inserting a pair of double quotes around the current cursor location. The pvs-prover-
wrap-with-parens command wraps a given prover command in parentheses and send it to
the prover. You must be at the end of the prover input to use this command.

3.5.9 Prover Commands
These commands simply prompt for any arguments, and then apply the specified prover
command to those arguments. After all the arguments, if any, have been given the command

36 3.5 Proving

is immediately executed by the prover. Not all prover commands are represented below, and
even for those that are given below not all arguments are prompted for. Commands with
complex arguments are generally easier to type in directly, using the M-x pvs-prover-

any-command command if desired. The M-p, M-n, and M-s keys are particularly useful in
this case, as a mistyped prover command can easily be brought back and corrected, or a
complex command that is used frequently may be easily brought back.

The prover command associated with the following Emacs commands should be ob-
vious. Details for any given command may be found by typing C-h d followed by the
command name, e.g., pvs-prover-auto-rewrite.

3.5 Proving 37

Command Aliases Function
pvs-prover-apply-extensionality TAB E

pvs-prover-assert TAB a

pvs-prover-auto-rewrite TAB A

pvs-prover-auto-rewrite-theory TAB C-a

pvs-prover-bddsimp TAB B

pvs-prover-beta TAB b

pvs-prover-case TAB c

pvs-prover-case-replace TAB C

pvs-prover-decompose-equality TAB =

pvs-prover-delete TAB d

pvs-prover-do-rewrite TAB D

pvs-prover-expand TAB e

pvs-prover-extensionality TAB x

pvs-prover-flatten TAB f

pvs-prover-grind TAB G

pvs-prover-ground TAB g

help-pvs-prover-command TAB H

pvs-prover-hide TAB C-h

pvs-prover-iff TAB F

pvs-prover-induct TAB I

pvs-prover-induct-and-simplify TAB C-s

pvs-prover-inst TAB i

pvs-prover-inst-question TAB ?

pvs-prover-lemma TAB L

pvs-prover-lift-if TAB l

pvs-prover-model-check TAB M

pvs-prover-musimp TAB m

pvs-prover-name TAB n

pvs-prover-postpone TAB P

pvs-prover-prop TAB p

pvs-prover-quit TAB C-q

pvs-prover-replace TAB r

pvs-prover-replace-eta TAB 8

pvs-prover-rewrite TAB R

pvs-prover-skolem-bang TAB !

pvs-prover-skosimp TAB S

pvs-prover-skosimp-star TAB *

pvs-prover-split TAB s

pvs-prover-tcc TAB T

pvs-prover-then TAB C-t

pvs-prover-typepred TAB t

pvs-prover-undo TAB u

38 3.5 Proving

3.5.10 Proof Stepper Commands
Command Aliases Function
pvs-prover-one-proof-step TAB 1

pvs-prover-many-proof-steps TAB @

pvs-prover-undo-one-proof-step TAB U

pvs-prover-undo-many-proof-steps TAB C-u

pvs-prover-skip-one-proof-step TAB #

The proof stepper is invoked with the step-proof or x-step-proof command, though
it may be used after a proof is begun simply by putting the cursor on the formula in the
specification and typing M-x edit-proof, which pops up the Proof buffer. When this
buffer is available, the proof stepper may be used. The proof stepper keeps track of the
current position within the Proof buffer, and when invoked from the *pvs* buffer, sends
the next command(s) from the Proof buffer to the prover, changing the current position
to point to the next command. When step-proof is invoked, the current position is at the
beginning of the buffer. Youmay go to the Proof buffer and edit it or change position within
it, and the stepper will then use the new information. The pvs-prover-one-proof-step

command just invokes the next single command in the proof buffer. The next command in
this sense is not necessarily simple, for example the next command may be

(apply (then* (skosimp*) (expand "foo") (lift-if) (ground)))

in which case the entire apply is invoked, not the individual components.
The pvs-prover-many-proof-steps prompts for the number of proof steps, and iter-

ates the pvs-prover-one-proof-step command that many times.
The pvs-prover-undo-one-proof-step undoes the last command, and backs up one

position in the Proof buffer. The pvs-prover-undo-many-proof-steps command prompts
for the number of steps to undo, and has the same effect as invoking pvs-prover-undo-

one-proof-step that many times. The difference between these and the pvs-prover-undo
command is that the latter does not change the position of the cursor within the Proof buffer.

The pvs-prover-skip-one-proof-step skips the next proof step.
If you are using a recent version of Emacs, then the next prover command should be

highlighted in the Proof buffer. All of the commands of this section move the highlight
the appropriate direction. The highlight does not always point to the correct location; in
particular, if you go to the Proof buffer, move the cursor, and go back to the *pvs* buffer,
then the highlight is not moved, but the next command is relative to the cursor position, not
the highlight. The highlight is only accurate right after one of these commands.

3.6 Prettyprinting 39

3.6 Prettyprinting
Command Aliases Function
prettyprint-theory ppt, C-c C-q t Prettyprint theory
prettyprint-pvs-file ppf, C-c C-q f Prettyprint PVS file
prettyprint-declaration ppd, C-c C-q d, C-M-q Prettyprint declaration
prettyprint-region ppr, C-c C-q r, C-M-\ Prettyprint region
prettyprint-theory-instance ppti, C-c C-q i Prettyprint theory instance
pvs-set-linelength Set prettyprinting line length

These commands are used to prettyprint portions of a specification using the built-in
formatting rules. The prettyprinted sections replace the originals in the specification buffers,
which are then marked as unmodified. If the prettyprinted version is not the desired one,
the Emacs commands undo or revert-buffer may be used to return to the earlier state.
Prettyprint commands are used primarily to “clean-up” after adding new declarations or
making a significant change to an existing declaration.

The prettyprint-theory command prettyprints the specified theory, and the prettyprint-
pvs-file prettyprints all the theories of the specified file; if the file has only one theory, then
these are equivalent. The prettyprint-declaration command prettyprints the declara-
tion at the cursor and the prettyprint-region command prettyprints all the declarations
within the specified region.

Note that comments are generally lost during prettyprinting.15
The prettyprint-theory-instance command prettyprints the given theory instance,

which is a theory name, generally including actual parameters and/ormappings. It is primar-
ily used to show the results of a theory instance involving complex actuals and/or mappings.
Given a theory name, for example, th[int, 2]{{ c := 13 }}, a new buffer th.ppti is
created with the contents of th, but with formals and uninterpreted declarations substituted
for. A second theory must be provided for context, in order to typecheck the actuals and the
mappings. The theory name is typechecked in this context, which may lead to a type error.
Note that the theory instance may not be a stand alone theory, as the substitutions may point
to declarations that are not visible to the original theory.

The pvs-set-linelength command sets the line length used to control prettprinting.
The default is the width (in characters) of the starting window.

3.7 Viewing TCCs
Command Aliases Function
prettyprint-expanded ppe, C-c C-q e Prettyprint expanded theory in new buffer
show-tccs tccs, C-c C-q s Show the TCCs of the specified theory

Arg: Show only unproved TCCs
show-declaration-tccs Show the TCCs of the specified declaration

Arg: Show only unproved TCCs

15The problem of disappearing comments will probably be corrected eventually, but it is not currently one
of our priorities.

40 3.8 PVS Files and Theories

As described in the introduction, the typechecker may generate obligations called type-
correctness conditions (TCCs), whichmust be discharged before the corresponding theory is
considered type correct. PVS does not insist that TCCs be taken care of during typechecking;
it simply stores the TCCs in the internal form of the theory, as if they were declared before
the declaration which spawned them. At some point it is necessary to view and prove the
TCCs, which is accomplished by means of the commands described below.

The prettyprint-expanded command provides a view of the entire theory (includ-
ing the expanded definitions of inline ADTs and conversions), with the TCCs inserted as
described above. When this command is invoked, it prompts for a theory name, and then
pops up a buffer containing the expanded theory. The name of the buffer is derived from
the theory name, with the extension .ppe. The buffer is read-only, and may not be parsed
or typechecked, although proofs of any displayed TCCs or other formulas may be initiated
in the usual way, simply by moving the cursor to the formula to be proved and invoking the
prove command.

The show-tccs command pops up a buffer with the extension .tccs displaying just the
TCCs. PVS prompts for the theory name and the name of the buffer is derived from the
theory name with the extension .tccs; the buffer is read-only. Proofs of TCCs are initiated
exactly as described above.

The show-declaration-tccs command pops up a bufferwith the name theory.declid.tccs,
displaying just the TCCs of the specified declaration. Proofs of any displayed TCCs may be
initiated in the usual way, simply by moving the cursor to the formula to be proved and
invoking the prove command.

The advantage to using the prettyprint-expanded command is that TCCs are shown
in context, so it is easy to determine their derivation. On the other hand, the show-tccs and
show-declaration-tccs commands are faster to process and include information about
the proof status in comments associated with each TCC.

When the theory associated with either of these buffers is reparsed or retypechecked,
the buffers are killed to ensure that all displayed information is current.

3.8 PVS Files and Theories

3.8.1 Finding Files and Theories
Command Aliases Function
find-pvs-file ff, C-c C-f Find buffer containing named PVS file
find-theory ft Find buffer containing named theory
view-prelude-file vpf List prelude file
view-prelude-theory vpt List prelude theory
view-library-file vlf List library file
view-library-theory vlt List library theory

The find-pvs-file command finds or creates a buffer containing the specified file and
makes it the current buffer. The file should be specified by filename only; i.e., the directory

3.8 PVS Files and Theories 41

and .pvs suffix should not be given. The find-theory command determines the PVS file
containing the specified theory, does a find-pvs-file for that file, and puts the cursor at
the start of the specified theory. If the theory cannot be found an appropriate error message
is displayed.16

PVS has a number of built-in theories which provide the primitive types, constants,
and formulas of the language. These built-in theories reside in the prelude file. The view-
prelude-file command displays the prelude file in a buffer in read-only mode. The view-
prelude-theory command displays a specified prelude theory in read-only mode. Com-
pletion is supported; to find out what prelude theories are available, hit the space bar when
prompted for a theory name. Prelude displays are strictly informative; although they resem-
ble a normal PVS specification, they do not belong to the current context and therefore may
not be parsed or typechecked. Proofs may be attempted as described in the prove command
description. Prelude theories may be copied to a new buffer and modified, as long as their
names are changed; theory names of the prelude may not be reused. Viewing the prelude is
useful for finding out what types, constants, and formulas are available, for seeing paradig-
matic examples of specifications, and for trying out the prover on some readily available
formulas.

The view-library-file and view-library-theory commands operate in a similar
manner to the view-prelude-file and view-prelude-theory commands. They allow for
completion on those libraries which are imported into the current context, and will pop up a
buffer containing the contents of the file, moving the cursor to the beginning of the specified
theory for view-library-theory. Giving an argument to view-library-file allows for
completion on all of the distributed libraries as well (i.e. those in the lib subdirectory of
the PVS installation) whether they are imported into the current context or not.

The view-library-file and view-library-theory commands may not report all of
the theories which have been imported into the context if the specification files in the context
have not yet been typechecked. A warning message will be printed to this effect if there are
no imported libraries found.

3.8.2 Creating New Files and Theories
Command Aliases Function
new-pvs-file nf Create PVS buffer containing named theory

Arg: Create minimal template
new-theory nt Create named theory in current buffer

Arg: Create minimal template

The new-pvs-file command prompts for a new file name, creates an associated buffer,
and inserts a template for a theory with the given name. The new-theory command prompts
for a theory name and puts the template in the current buffer, thus adding a new theory to the
associated file. These commands are merely conveniences; a new PVS file may be created

16Note that find-pvs-file and find-theory will only find files and theories that are in the current PVS
context

42 3.8 PVS Files and Theories

simply by using find-file, giving the new file name (with the .pvs extension), and typing
in the theory. Similarly, a new theory may be added to a given PVS file simply by typing
the theory in at an appropriate place in the file. In these cases, the theories and files are
unknown to the context until they are parsed. The template normally includes comments
indicating the form of formal parameters and the assumings section; with an argument a
minimal template is used that simply gives the beginning and end of the specified theory.

3.8.3 Importing Files and Theories
Command Aliases Function
import-pvs-file imf Import a text file as a PVS file
import-theory imt Import a theory into the current buffer

The commands described here allow files and theories to be imported from other con-
texts. The import-pvs-file command prompts for a source file (including directory, but
omitting the .pvs extension) and a target file (a new PVS filename without directory or
extension) and copies the former to the latter, and places the file in the current context. In
addition, the corresponding proof file is copied.

The import-theory command is similar, but prompts for a theory within the source as
well as the source; the theory is copied after the current theory in the current PVS buffer. It
is an error to invoke this command from any buffer other than a .pvs buffer.

3.8.4 Deleting Files and Theories
Command Aliases Function
delete-pvs-file df Delete PVS file from the context

Arg: Delete the file from the directory
delete-theory dt Delete theory from PVS file

The delete-pvs-file command deletes a specified PVS file from the context, which
means that all included theories are removed from the context, and any theories which de-
pend on them are marked as untypechecked. Note that the file is not actually deleted, but
simply removed from the context, so theory names declared in the file may be reused. To
delete the file, a command argument must be supplied, in which case all of the associated
proofs are copied to the orphaned proof file.

The delete-theory command deletes a theory from the file which contains it, removes
it from the context, untypechecks any dependent theories, and copies any proofs to the
orphaned proof file. Note that using standard Emacs commands to delete the theory from a
PVS file and reparsing the file will have the same effect.

3.8 PVS Files and Theories 43

3.8.5 Saving Files
Command Aliases Function
save-pvs-file C-x C-s Save PVS file in current buffer
save-some-pvs-files ssf Save modified PVS files
save-pvs-buffer Saves the current buffer to file

PVS files are usually saved automatically at certain points, e.g., prior to parsing, type-
checking, or proving. The save commands allow you to explicitly request the saving of
files. The save-pvs-file and save-some-pvs-files commands are almost identical to
the Emacs commands save-buffer and save-some-buffers, except that they work only
with PVS buffers.

The save-pvs-buffer command copies the contents of the current buffer to the speci-
fied file name, without renaming the buffer. This command should be used for buffers that
have no associated file instead of the Emacs write-file command, which does rename the
buffer.

3.8.6 Mailing PVS Files
Command Aliases Function
smail-pvs-files Send a set of PVS files by e-mail
rmail-pvs-files Read a set of PVS files sent by smail-pvs-files

These commands make it easy to send and receive sets of PVS files. At least two mes-
sages are sent: one that is composed by you, to explain the contents of the following mes-
sage(s), and the rest which are the files tarred, compressed, and translated to ascii. If the
resulting file is large, then it is also split into smaller pieces that are mailed separately.

The smail-pvs-files command prompts for a root file, an e-mail address (defaults to
pvs-bugs@csl.sri.com, or the last address used in this session), a CC: list, and a subject
line. A mail buffer is then popped up so that you can compose your message. When you
have completed your message, type C-c C-c to send it.17 At that point the patch revision
number is added to the end of your message, the PVS files in the import chain of the root
file are collected along with the associated proof files and the files pvs-strategies, pvs-
tex.sub, ~/pvs-strategies, ~/pvs-tex.sub, and ~/.pvsemacs. Those files collected
from your home directory will be put in a newly created directory named PVSHOME. Then
all of these file will be sent using tarmail, which uses tar, compress, btoa, and split to
send the files collected, splitting them into multiple parts if necessary. A buffer is popped
up showing the result of the tarmail command; you should look this over to verify that
all of the desired files are included, and that there are no errors. Use C-z 1 to remove this
buffer. After the files are sent, the PVSHOME directory is deleted.

The rmail-pvs-files command unpacks mail sent by smail-pvs-files. To use this,
first create a new directory in which to install the files, and, using your favorite mailer, copy
the files to the new directory with extensions corresponding to the message order, e.g.,

17If you change your mind about sending a message, simply kill (C-x k) the *mail* buffer.

44 3.8 PVS Files and Theories

mail.01, mail.02, etc. If there is just one file, leave the extension off. Then invoke M-x

rmail-pvs-files and give the root file name when prompted (e.g., mail). The mail files
will be unpacked using untarmail, and a pop-up buffer will be displayed showing the files
that have been unpacked. If a directory named PVSHOME has been created, it will contain the
PVS files from the home directory of the person that sent the mail. If these are needed, they
should be copied or merged into the corresponding files in your home directory. Check that
the patch version number that appears at the bottom of the first (readable) mail message
matches the patch revision number in the PVS Welcome buffer. If they don’t match, the
sender or receiver (or both) should update their PVS installations (see http://pvs.csl.

sri.com fro details).

3.8.7 Dumping Files
Command Aliases Function
dump-pvs-files Write files in IMPORT chain to file
undump-pvs-files Break dump file into separate PVS files

Arg: overwrites existing files without asking
edit-pvs-dump-file Edit a PVS dump file

The dump-pvs-files and undump-pvs-files commands allow entire specifications
and their associated proofs to be saved to, and restored from, single text files. The primary
purpose of these commands is to allow complete specifications to be communicated conve-
niently from one place to another, e.g., by electronic mail. A secondary purpose is to make
global edits, e.g., changing the name of a constant or formula throughout all of the .pvs

and .prf files.
The dump-pvs-files command prompts for the name of a PVS file and a file pathname,

and dumps the specification text and proofs of all theories on the import chain of the theories
of the specified theories to the given file. undump-pvs-files prompts for a file pathname
and performs the inverse process, importing all theories whose specification text is present
in the named file. Both commands ask for confirmation prior to overwriting an existing file.

The edit-pvs-dump-file command makes it easy to edit a dump file created by dump-
pvs-files. This is useful when you wish to send just a subset of the theories in the import
chain. Note that the system uses $$$ followed by the file name as a separator; if these are
modified files may be merged randomly when they are undumped. The dump file buffer is
put in outline mode, with these separators treated as headings. The hide-body (C-c C-t)
command will show just these separators, making it easy to remove entire files. See the
Emacs manual for more details on outline mode.

http://pvs.csl.sri.com
http://pvs.csl.sri.com

3.9 PVS Output 45

3.9 PVS Output

3.9.1 Printing Buffers and Regions
Command Aliases Function
pvs-print-buffer Print buffer contents
pvs-print-region Print region contents

These PVS commands are used to send buffers to the printer and replace the Emacs lpr-
buffer and lpr-region commands, whose behavior they default to. This behavior can
be modified by setting the pvs-print-command, pvs-print-switches, and pvs-print-

title-switches Emacs variables. For example, to use enscript
18 in gaudy mode pro-

ducing two column rotated output, add the following lines to your ~/.pvsemacs file:

(setq pvs-print-command "enscript")

(setq pvs-print-switches '("-G" "-2" "-r"))

(setq pvs-print-title-switches '("-b" "-J"))

The pvs-print-commandmust be a single print command; pipes are not allowed.19 The
pvs-print-switches variable contains a list of switches for the print command. The pvs-
print-title-switches contains switches that each expect a name; the name provided to
each of these switches is the name of the buffer in which the command was invoked.

3.9.2 Printing Files and Theories
Command Aliases Function
print-theory ptt Send theory to printer
print-pvs-file ptf Send PVS file to printer
print-importchain pti Send theories in import chain to printer

These commands send the specified theories to the printer, using the pvs-print-buffer
and pvs-print-region commands. Multiple theories are concatenated into a single buffer,
separated by page breaks, and then printed, thereby saving paper on systems that print a burst
page with each print job.

3.9.3 Generating alltt Output
Command Aliases Function
alltt-theory alt, C-c C-a t Format theory for LATEX alltt environment
alltt-pvs-file alf, C-c C-a f Format theories of file for LATEX alltt
alltt-importchain ali, C-c C-a i Format theories in import chain for LATEX alltt
alltt-proof alp, C-c C-a p Format last proof for LATEXalltt

Arg: make it brief

18
enscript is one of many print commands that provide better support and more options for postscript

printers than the default lpr command.
19To handle pipes, create a shell script somewhere in your path and set pvs-print-command to its name.

46 3.9 PVS Output

These commands allow a specification to be inserted into a LATEX document in an alltt
environment. The alltt environment is defined in a style file included with the stan-
dard LATEX distribution. It is similar to the verbatim environment but allows a little more
flexibility—see the alltt.sty file for details.

For each theory foo within the specified set of theories, the file foo-alltt.tex is cre-
ated, which can then be inserted in a document in an alltt environment. The only dif-
ferences between the alltt file and the original theory are that the braces ({ and }) are
preceded by \ so they will not be interpreted by LATEX, and tabs are replaced by spaces.

The alltt-proof command asks for a filename, and generates a LATEX alltt text file for
the last proof attempted. If there was no proof attempted in the session, then the system will
state that a proof must be rerun. The proof is written in terse mode, unless an argument is
given, in which case it provides a verbose printout of the proof.

3.9.4 Generating LATEX Output
Command Aliases Function
latex-theory ltt, C-c C-l t Create LATEX for theory
latex-pvs-file ltf, C-c C-l f Create LATEX for theories of PVS file
latex-importchain lti, C-c C-l i Create LATEX for theories in importchain
latex-proof ltp, C-c C-l p Create LATEX for last proof

Arg: make it brief
latex-theory-view ltv, C-c C-l v Create LATEX for theory, LATEX and view
latex-proof-view lpv, C-c C-l P Create LATEX for last proof, LATEX, view
latex-set-linelength lts, C-c C-l s Set the linelength for LATEX text

The first three commands generate LATEX output for theories to be included in a docu-
ment. If one of these commands is invoked in a PVS specification, a new file with the name
of the theory and the .tex extension is generated in the current context for each specified
theory.

The latex-proof command asks for a filename, and generates a LATEX text file for the
last proof attempted. The default filename is the name of the formula last proved, with a
.tex extension. If there was no proof attempted in the session, then the system will ask for
a proof to be rerun. The proof is written verbosely, unless an argument is given, in which
case it provides a brief printout of the proof, and only the changed sequent formulas are
printed..

In addition to the generated specification and proof files, a file named pvs-files.tex

is generated that includes all of the files generated in the last invocation of one of these
commands. The purpose of the pvs-files.tex file is two-fold: to facilitate LATEXing and
printing the theories, and to illustrate the inclusion of these files in a document. It is best to
create your own top-level file to include the others, as the pvs-files.tex file is overwritten
with each latex output command.

These commands make use of the prettyprinter, which uses the linelength to determine
where to make line breaks. For prettyprinting in Emacs buffers, this is set according to the
size of the window if in X windows, or to 80 otherwise. For prettyprinting specifications

3.9 PVS Output 47

for LATEX, however, there is no easy way to determine the “right” value, as the page width,
number of columns, font size, etc., all contribute to the determination of the actual value.
The latex-set-linelength command allows you to set the linelength according to your
needs. The default value is 100, which generates reasonable looking specifications for pvs-
files.tex.

To process the generated files you must include the pvs.sty style file, located in the
main PVS directory. (see the LATEX manual [1] for details on including style files).

While generating a LATEX file for a theory, the system automatically makes substitu-
tions for many of the built-in symbols; for example, FORALL is translated to the symbol ∀.
This capability can be extended to user-defined symbols by means of a substitution file that
specifies how to translate specified identifiers and keywords of a given specification.

To specify your own substitutions, create a new file named pvs-tex.sub in the current
context or your home directory. Each row of this file specifies an identifier, its kind and
arguments, an estimated length (in ems), and the substitution. For example,

THEORY key 7 {\large\textbf{\textrm{Theory}}}

sum 1 2 {\sum_{i=0}^{#1} i}

sum (2 1) 2 {\sum_{i=#1}^{#2} #3}

sum [2] 1 {sum_{#1}^{#2}}

th.sum 1 2 {\bigoplus_{i=0}^{#1} i}

The identifier is an identifier or keyword in the specification; keywords must be given
in upper case, and identifiers must match the case given in the specification.

Identifiers may also include a theory name, for example, groups.+. This allows the
limited number of ASCII operators to be mapped to different LATEX symbols. Note that
actuals may not be included as this would require typechecking the substitution file.

The kind field may be specified as one of the symbols id or key, a number, a parenthe-
sized sequence of numbers (e.g., (2 1 3)), or a number in square brackets. The symbol key
is used for keywords only; the others are used for translating identifiers. If the kind is simply
id, substitution is done for occurrences of the identifier that have no arguments or actual
parameters provided. If the kind is a number, the substitution is performed when the identi-
fier appears with the specified number of arguments. A kind field specified as a sequence of
parenthesized numbers corresponds to a curried function. For example, the fourth entry in
the above set of substitutions would be used for an occurrence of sum(a + 1, b)(n) in the
specification. When the number is in square brackets, the translation is used whenever the
name appears with that number of actual parameters. With the substitutions given above,
an occurrence of sum[int,3] would be translated to sum3

int.
When both the argument form and the actuals form are provided in the pvs-tex.sub

file and both are given in the specification, the argument form is used. Thus using the above
translation, sum[int,3](a+1,b)(n) would be translated to ∑𝑏

𝑖=𝑎+1 𝑛.
The argument form also pertains to declarations; so a declaration of the form

i,j,n: VAR int

sum(i,j)(n): RECURSIVE int = …

48 3.10 Generating HTML

will be nicely printed, whereas the equivalent declaration

sum(i,j:int)(n:int): RECURSIVE int = …

will still use the argument form, but will have types included, and

sum: RECURSIVE [int, int -> [int -> int]] = (LAMBDA …)

will be translated using the id form.
The length field specifies the expected size of the substitution, excluding arguments.

The size is given in ems; an em is roughly the size of an m in the current font. This number
does not have to be accurate, it is used by the underlying prettyprinting routines to determine
the placement of line breaks. If the length field is a hyphen, then the length is taken to be
the length of the identifier.

The final field gives the substitution. The arguments, if any, are substituted for #1, #2,
etc. in the order given. For example, in the expression “sum(a + 1, b)(n),” a + 1 would
be substituted for #1, b for #2, and n for #3.

The substitution file overrides substitutions provided in the default substitution file lo-
cated in the PVS directory. In addition, a pvs-tex.sub file in your home directory overrides
the default, but does not override substitutions specified in the current context. Finally, a
substitution file for a specific theory may be provided; if the theory name is foo, then the
substitution file foo.sub overrides all of the above when the theory foo is being processed.

3.10 Generating HTML
Command Aliases Function
html-pvs-file Generate HTML for a PVS file
html-pvs-files Generate HTML for all files imported by a given PVS file

These commands generate HTML files corresponding to PVS files. These can be gen-
erated in place, or in a specified web location. This is driven by setting a Lisp variable
pvs-url-mapping, as described below.

The in place version creates a pvshtml subdirectory for each context and writes HTML
files there. This is done by copying the PVS file, and adding link information so that com-
ments and whitespace are preserved. Note that there is no html-theory command. This is
not an oversight; in creating the HTML file links are created to point to the declarations of
external HTML files. Hence if there was as way to generate HTML corresponding to both
theory and PVS file, it would be difficult to decide which a link should refer to.

HTML files can be generated in any order, and may point to library files and the prelude.
Of course, if these files do not exist then following these links will produce a browser error.
The html-pvs-files command will attempt to create all files that are linked to, failure is
generally due to write permission problems.

Usually it is desirable to put the HTML files someplace where anybody on the web can
see them, in which case you should set the *pvs-url-mapping* variable. It’s probably best

3.10 Generating HTML 49

to put this in your /.pvs.lisp file in your home directory so that it is consistently used.
This should be set to a list value, as in the following example.

(setq *pvs-url-mapping*

'("http://www.csl.sri.com/~owre/"

"/homes/owre/public_html/"

("/homes/owre/pvs-specs" "pvs-specs" "pvs-specs")

("/homes/owre/pvs3.2" "pvs-specs/pvs3.2" "pvs-specs/pvs3.2")

("/homes/owre/pvs-validation/3.2/libraries/LaRC/lib"

"pvs-specs/validation/nasa"

"pvs-specs/validation/nasa")))

The first element of this list forms the base URL, and is used to create a <base> element
in each file. The second element is the actual directory associated with this URL, and is
where the html-pvs-file commands put the generated files. The rest of the list is com-
posed of lists of three elements: a specification directory, a (possibly relative) URL, and a
(possibly relative) HTML directory. In the above example, the base URL is http://www.
csl.sri.com/~owre/, which the server associates with /homes/owre/public_html. The
next entry says that specs found in (a subdirectory of) /homes/owre/pvs-specs are to have
relative URLs corresponding to pvs-specs, and relative subdirectories similarly. Thus a
specification in /homes/owre/pvs-specs/tests/conversions/ will have a correspond-
ing HTML file in /homes/owre/public_html/pvs-specs/test/conversions/ and cor-
respond to the URL http://www.csl.sri.com/~owre/pvs-specs/test/conversions/.
In this case, PVS is installed in /homes/owre/pvs3.2, and thus references to the prelude
and distributed libraries (such as finite sets), will be mapped as well. Note that in this ex-
ample, all the relative structures are the same, but it doesn’t have to be that way.

The *pvs-url-mapping* is checked to see that the directories all exist, though currently
no URLs are checked (if anybody knows a nice way to do this from Lisp, please let us
know). If a subdirectory is missing, the systemwill prompt you for each subdirectory before
creating it. A n or q answer terminates processing without creating the directory, a y creates
the directory and continues, and a ! causes it to just create any needed directories without
further questions.

If a *pvs-url-mapping* is given, it must be complete for the file specified in the html-
pvs-file command. In practice, this means that your PVS distribution must be mapped as
well. PVS will complain if it is not complete; in which case simply add more information
to the *pvs-url-mapping* list.

No matter which version is used, the generated HTML (actually XHTML) file contains
a number of elements. These simply provide a way to add class attributes, which
can then be used in Cascading Style Sheet (CSS) files to define fonts, colors, etc. The classes
currently supported are:

span.comment

span.theory

http://www.csl.sri.com/~owre/
http://www.csl.sri.com/~owre/
http://www.csl.sri.com/~owre/pvs-specs/test/conversions/

50 3.11 Display Commands

span.datatype

span.codatatype

span.type-declaration

span.formal-declaration

span.library-declaration

span.theory-declaration

span.theory-abbreviation-declaration

span.variable-declaration

span.macro-declaration

span.recursive-declaration

span.inductive-declaration

span.coinductive-declaration

span.constant-declaration

span.assuming-declaration

span.tcc-declaration

span.formula-declaration

span.judgement-declaration

span.conversion-declaration

span.auto-rewrite-declaration

See the <PVS>/lib/pvs-style.css file for examples. This file is automatically copied to
the base directory if it doesn’t already exist, and it is referenced in the generated HTMLfiles.
Most browsers underline links, which can make some operators difficult to read, so this file
also suppresses underlines. This file may be edited to suit your own taste or conventions.

Both the html-pvs-file commands take an optional argument. Without it, many of
the common prelude operators are not linked to. With the argument all operators get a link.
Overloaded operators not from the prelude still get links.

3.11 Display Commands
Command Aliases Function
x-theory-hierarchy Display the IMPORTING chain from a theory
x-show-proof Display the proof of specified formula in an X window
x-show-current-proof Display the current proof in an X window

These commands provide graphical displays by making use of the Tcl/Tk [2] system.
To use these commands you must be running the X Window System and have the DISPLAY
environment variable correctly set. In addition, you must have Tcl/Tk (version 7.3/3.6 or
later) installed, and the wish command must be in your path before you start PVS (or the
variable pvs-wish-cmd must be set to the full pathname of wish).

The x-show-current-proof command creates a window showing the current proof
tree. Every sequent in the tree is represented by a ⊢ symbol. The proof commands used to
create the tree will also be shown between the ⊢ symbols. This tree will be automatically

3.11 Display Commands 51

updated after every proof command.
To see the full text of a given sequent, click on the ⊢ symbol. The ⊢ will acquire a

number, and a new numbered window will pop up containing the text of the sequent. Proof
commands which are longer than a certain customizable length (see below) are abbreviated;
the full command can be seen by clicking on the abbreviation. Figure 3.1 shows an example
proof display, in which the case rule and two sequents have been clicked on. The look of
your display will probably be different, depending on the window manager you use and the
defaults you set up for it.

Colors are used to display status information about the proof. These colors may be
specified using the X resource database (i.e., in your .Xresources or .Xdefaults file).
Stipple patterns may be specified instead of colors; a stipple pattern is specified as @file,
where file is either an absolute pathname of a file in X bitmap format or the special bitmap
name gray.20

The current resources and their defaults are:

Resource name Color default Monochrome default
pvs.windowbackground wheat white
pvs.displaybackground white white
pvs.displayforeground black black
pvs.activedisplaybackground mediumslateblue black
pvs.activedisplayforeground white white
pvs.buttonbackground lightblue white
pvs.buttonforeground black black
pvs.activebuttonbackground steelblue black
pvs.activebuttonforeground white white
pvs.troughcolor sienna3 black
pvs.currentColor DarkOrchid black
pvs.circleCurrent yes yes
pvs.tccColor green4 black
pvs.doneColor blue @gray
pvs.ancestorColor firebrick black
pvs.abbrevLen 35 35
pvs.displayfont lucidasanstypewriter-bold-12
pvs.buttonfont lucidasanstypewriter-10
pvs.proof.geometry none
pvs.theory-hierarchy.geometry none
pvs.prover-commands.geometry none

The foreground color is used for things that aren’t otherwise specified below. The
currentColor is used for the current sequent in the proof tree. The ancestorColor is

20If file is not an absolute path, it is looked up in the wish subdirectory of the PVS directory, which
contains the gray bitmap.

52 3.11 Display Commands

Figure 3.1: A Proof Display Example

3.12 Context Commands 53

used for all the ancestors of the current sequent, up to the root. The doneColor is used for se-
quents which have been proved. The tccColor is used for TCC’s. When pvs.circleCurrent
is set, the current sequent in the proof tree is circled.

Proof commands which are longer than abbrevLen characters are abbreviated.
If the Emacs variable pvs-x-show-proofs is not NIL, then prove automatically calls

x-show-proof. This can be set in your .pvsemacs file.
The x-theory-hierarchy command prompts for a theory name and displays the IMPORTING

hierarchy rooted at that theory. In a complex hierarchy, it can be difficult to follow the lines;
to make this easier, when you move the mouse onto a theory identifier, all the lines connect-
ing that theory to other theories turn the highlight color. Clicking on a theory identifier
will bring up the theory in Emacs. Figure 3.2 shows an example of the theory hierarchy
for the finite_sets library, as produced from clicking on the Gen PS button and selecting
portrait.

The remainder of this section applies to both x-show-proof and x-theory-hierarchy.
The layout in the windows created by these commands can be manually edited. The

editing commands are accessed by holding down the Control key while pressing mouse
buttons. In a proof window, pressing Control-button 1 and dragging moves a whole proof
subtree, while Control-button 2 moves a single sequent. In a theory hierarchy window,
Control-button 1 moves a theory. (Note that most proof commands will do a relayout.)
Once the layout is to your liking, the Gen PS button will generate a PostScript file which
contains the contents of the window. The filename will be briefly displayed below the but-
tons.

The Config button will bring up a menu which will let you customize the horizontal
and vertical separations used by the automatic layout for the current window. These can
also be customized with the resource database.

Resource name Default
pvs*proof*xSep 10
pvs*proof*ySep 20
pvs*th-hier*xSep 50
pvs*th-hier*ySep 100

3.12 Context Commands
Command Aliases Function
list-pvs-files lf Display a list of PVS files in current context
list-theories lt Display a list of theories in current context
change-context cc Switch to a new context
save-context sc Save the current context
pvs-remove-bin-files Remove the .bin files of the current context
pvs-dont-write-bin-files Inhibit writing or loading of .bin files
pvs-do-write-bin-files Allows writing and loading of .bin files (default)
context-path cp Display pathname of current context

54 3.12 Context Commands

Figure 3.2: The Theory Hierarchy for the finite_sets Library

3.13 Library Commands 55

The list-pvs-files and list-theories commands prompt for a directory, default is
to the current directory; if there is a PVS context in the given directory, these commands
list the PVS files or theories in that context. The resulting buffer is in a special mode, which
allows the file/theory to be viewed (by typing a “v”), selected (by typing a “s”) or imported
(by typing an “i”). A file or theory may only be selected if it is in the current context, and
may only be imported if it is not. Importing a theory from the list of theories will import
the associated file.

The change-context command is similar to the “cd” command in UNIX; it saves the
context (see below), and changes the working directory to the specified one. The PVS

Welcome buffer is then displayed indicating the new directory. If the requested directory
does not exist, and the Emacs you are running supports make-directory, then PVS offers
to make a new one, including parent directories if necessary. If the command fails for any
reason, then the current context stays the same.

The save-context command saves the current state of the session in the context file
.pvscontext. In addition, any PVS files that have been typechecked will generate a bi-
nary (.bin) file, unless there is already a current one saved, or the dont-write-bin-files
command has been invoked.

Under normal circumstances, binary (.bin) files corresponding to the specification
(.pvs) files are updated or created as needed. These binary files contain type informa-
tion, so that loading a binary file has the same effect as typechecking the corresponding
PVS file, but is generally much faster. The down side is that binary files take more disk
space. If that is a problem then use the pvs-dont-write-bin-files, which neither loads
nor creates binary files. This can be added to your .pvsemacs file, by adding the line

(pvs-dont-write-bin-files)

The pvs-do-write-bin-files undoes the effect of the pvs-dont-write-pvs-files, and
is not needed normally. The pvs-remove-bin-files command may be used to remove the
binary files that have been created.

The context-path command uses the minibuffer to display the directory path associ-
ated with the current context.

3.13 Library Commands
Command Aliases Function
load-prelude-library Extend the prelude from the specified context
remove-prelude-library Remove the specified context from the prelude

The load-prelude-library command prompts for a context pathname (i.e.,directory),
and extends the prelude with all of the theories that make up that context. Note that the
theories that make up the context are defined by the .pvscontext file in the associated
directory—there may be specification files in the same directory that are not a part of the
context. The files that make up the context are typechecked if necessary, and internally the

56 3.14 Browsing

prelude is extended. All of the theories of the current context are untypechecked, as they
may not typecheck the same way in the extended prelude. The PVS context is updated to
reflect that the prelude has been extended. Thus the next time this context is entered, the
prelude will automatically be extended (by typechecking the libraries if necessary).

This is just one of two means of gaining access to theories of a different context (short
of copying them). For an alternative approach see the language guide [3].

The remove-prelude-library command removes the specified library from the pre-
lude. It reverts all the theories of the current context to untypechecked to guarantee that no
theories depend on the removed library. Note that the built-in prelude may not be removed
this way.

3.14 Browsing
Command Aliases Function
show-declaration M-. Show declaration of symbol at cursor
goto-declaration M-' Go to declaration of symbol at cursor
find-declaration M-, Search for declarations of given symbol
whereis-declaration-used M-; Search for declarations which reference identifier
whereis-identifier-used C-M-; Search for declarations which reference identifier
list-declarations M-: Produce list of declarations in import chain
show-expanded-form C-. Show expanded form of term containing region

Arg: also expand names from the prelude

These commands browse a specification consisting of several PVS files and theories,
providing information about where entities are declared and used. All of these commands
browse the prelude as well as user files.

The show-declaration command is used to determine the declaration associated with
the symbol or name at the cursor. Positioning the cursor on a name in the specification
and typing M-. yields a pop-up buffer displaying the declaration. This command is useful
to determine the type of a name, or the resolution determined by the typechecker for an
overloaded name. Note that when used on a record accessor it will display the declaration
of the record rather than just the record field.

The goto-declaration command goes to the declaration associated with the symbol or
name at the cursor. It pops up a buffer containing the theory associated with the declaration,
and positions the cursor at the declaration.

The find-declaration command takes a name and returns a list of all the declarations
with that name, the default name is the one under the cursor. Each row in the display speci-
fies the declaration name, its kind/type, and the theory to which it belongs. Declarations in
this list may be viewed by placing the cursor on the row of interest and typing “v.” Typing
“s” will read in the associated file and position the cursor at the declaration. A “q” quits
and removes the declaration buffer.

The whereis-declaration-used command generates a list of declarations which ref-
erence the entity denoted by a given identifier. The related whereisidentifier-used com-

3.15 Theory Status 57

mand generates a list of all references to a textually identical identifier, which may or may
not result from the same declaration, due to overloading and multiple declarations. The
list-declarations command generates a listing of all the declarations in the import chain
of the specified theory. For all of these commands, the resulting buffer behaves exactly as
described for find-declaration.

The show-expanded-form command displays the expanded form of the term containing
the region in the Expanded Form buffer. Each variable, constant and operator is expanded to
its full name including the theory name and its parameters, unless they are from the current
theory or the prelude. With an argument, prelude names are also expanded. If the region is
not defined, the current cursor location is used instead.

3.15 Theory Status
Command Aliases Function
status-theory stt, C-c C-s t Status of specified theory (parsed, etc.)
status-pvs-file stf, C-c C-s f Status of theories of current file
status-importchain sti, C-c C-s i Status of theories in import chain of theory
status-importbychain stb, C-c C-s b Status of theories in import by chain

These commands provide information regarding the status of the specified theories. The
status information for a theory indicates whether it is parsed or typechecked, and provides
the number of formulas, the number proved, the number of TCCs generated, and the number
of TCCs proved. Note that the number of formulas does not include the TCCs.

The number of theory warnings and messages is also displayed. See the show-theory-
warnings and show-theory-messages on page 22 for more information on these com-
mands.

The status-theory command provides the status of the specified theory in theminibuffer.
The status-pvs-file, status-importchain, and statusimportbychain commands dis-
play the information in the PVS Status buffer with a line for each theory. Using any of these
commands on the sum theory yields

sum is typechecked: 1 formula, 1 proved; 2 TCCs, 2 proved; 0 warnings; 0 msgs

The show-theory-warnings and show-theory-messages (page 22) may be used to
see any warnings or messages.

The status-importchain and status-importbychain commands display the IMPORTING
chains of the specified theory, indented to indicate the tree structure. The status-importchain
command works recursively down the IMPORTINGs, displaying the status of each theory un-
less it has been displayed earlier in the buffer. The status-importbychain works in the
opposite direction.

58 3.17 Environment Commands

3.16 Proof Status
Command Aliases Function
status-proof sp, C-c C-s p Status of formula at cursor
status-proof-theory spt Status of formulas in theory

Arg: provide timing information
status-proof-pvs-file spf Status of formulas in PVS file

Arg: provide timing information
status-proof-importchain spi Status of formulas on importchain

Arg: provide timing information
status-proofchain spc Proofchain of formula at cursor
status-proofchain-theory spct Proofchain of specified theory
status-proofchain-pvs-file spcf Proofchain of current file
status-proofchain-importchain spci Proofchain of importchain

These commands provide the status of the proofs of the indicated formulas. The status-
proof command uses the minibuffer to display the proof status of the formula at the cursor.
The status can be one of proved, untried, unfinished, or unchecked. Untried means that
the proof has not yet been attempted. Unfinished means that the proof has been attempted,
but is not complete. Unchecked means that the proof was successful at one point, but that
some changes have been made that may invalidate the proof.

The commands status-proof-theory, status-proof-pvs-file, and statusproof-
importchain use the PVS Status buffer to display the proof status for all of the formulas
within the theory, PVS file, or the import chain respectively. With an argument, these com-
mands display timing information as well.

The status-proofchain command provides a proof chain analysis of the formula at
the cursor and displays it in the PVS Status buffer. The proof chain analysis indicates
whether the formula has been proved, and analyses the formulas used in the proof to insure
that the proof is complete; lemmas used in the proof are proved and sound, i.e., there are no
circularities (for example, using lemma 𝒜 to prove ℬ and vice-versa). Because judgements
are used implicitly, they may be included in the analysis even if they are not actually used.

The commands status-proofchain-theory, status-proofchain-pvs-file, and status-
proofchain-importchain provide the proof chain analysis for each formula of the theory,
PVS file, and import chain of the specified theory, respectively, in the PVS Status buffer.

3.17 Environment Commands
Command Aliases Function
whereis-pvs Display the root PVS directory
pvs-version Display current version of PVS and underlying Lisp
pvs-mode Put current buffer in PVS mode
pvs-log Display the PVS Log buffer
status-display Display the PVS Status buffer
pvs-status Find out if PVS is busy
pvs Start the PVS process
pvs-load-patches Load new PVS patches

3.18 Interrupting PVS 59

The whereis-pvs command is used to determine the directory where the PVS system
resides. This is useful for finding the example specifications and files that are part of the
PVS distribution.

The pvs-version command displays the current version of PVS.
The pvs-mode command puts the current buffer in PVSmode. This command is not nor-

mally needed; buffers with a .pvs extension and buffers created by PVS are automatically
put in the proper mode.

Most of the messages that appear in the minibuffer are kept in the PVS Log buffer,
stamped with the time. The pvs-log command simply pops up the PVS Log buffer so that
you may view it.

The status-display command simply displays the PVS Status buffer. This is the
buffer used for most of the status commands.

The pvs command is what is used to actually start PVS after the Emacs files have all
been loaded. It is provided as a user command because there are times when the PVS lisp
subprocess has been killed and you wish to start up that process while keeping the same
Emacs session.

The pvs-load-patches command reloads the patches. This is useful when new patches
have been installed, and you wish to load them without exiting the system and starting up
again.

3.18 Interrupting PVS
Command Aliases Function
pvs-status Find out if Lisp is busy
pvs-interrupt-subjob C-c C-c Interrupt PVS (lisp) process
reset-pvs C-z C-g Abort PVS and resynchronize

Many PVS commands run in the background, allowing other editing activities to pro-
ceed concurrently. The effect of issuing new commands while another command is running
depends on the command: background commands placed on the command queue. Other
(nonbackground commands) interrupt the currently running command, execute, and return
control to the interrupted command. The Emacs status line indicates the abbreviation of the
command that is currently running, if any, or ready. The pvs-status command provides
information about both the currently running command and the command queue.

To interrupt PVS for any reason, the following procedure is recommended. First, if the
keyboard is not responding, type the built-in Emacs command keyboard-quit (C-g); it
may need to be struck a few times before there is any response—usually a beep and Quit

appears in the minibuffer. This command interrupts Emacs, but has no effect on any PVS
commands that are still running. After Emacs responds go to the end of the *pvs* buffer,
and type C-c C-c. If Lisp is able to respond, you should see the message

Error: Received signal number 2 (Keyboard interrupt)

[condition type: INTERRUPT-SIGNAL]

60 3.18 Interrupting PVS

Restart actions (select using :continue):

0: continue computation

1: Return to Top Level (an "abort" restart)

[1c] PVS(22):

You can then type :continue 0 to keep going as it was never interrupted, (restore)
if you are in the middle of an ongoing proof and want to continue from the state prior to the
last atomic prover command (see the prover guide [7]), or :continue 1 or :reset to abort
to the top level.

The Lisp process may not be able to respond to the interrupt right away, especially if it
has started garbage collection. If you really want to interrupt it, type more C-c C-c inter-
rupts; after about six of them it is supposed to respond regardless. This is not recommended
in general as it can leave the Lisp process in an unstable state. Unfortunately, we have seen
Allegro Common Lisp get into a state where it is completely unresponsive, even after sev-
eral interrupts and waiting for hours for a response. This is rare, but if it happens the only
recourse is to kill the process and start up a new PVS session. See below for how to do this
while allowing Emacs to continue.

The reset-pvs command aborts any ongoing activity in PVS; its effects depend on
whether it is issued from the *pvs* buffer or from some other buffer. In the former case,
reset-pvs simply interrupts PVS as if you typed C-c C-c, as described above. If reset-
pvs is issued somewhere other than the *pvs* buffer, you are asked whether to reset PVS in
case the command was typed accidentally; if not, the current command is aborted and the
command queue is emptied.

If you wish to kill the PVS Lisp process, while keeping your current Emacs session,
simply go to the *pvs* buffer and kill it kill-buffer C-x k, then run pvs and the PVS
Lisp process will restart. All your other Emacs buffers are unaffected by this.

Chapter 4

Customizing PVS

PVS is a complex system, and utilizes many subsystems, including Lisp, Emacs, the X
window system, and Tcl/Tk. You can control aspects of these subsystems by a combination
of command-line arguments, environment variables, and various files. In this section we
discuss some aspects of the customization of these subsystems as they relate to PVS.

4.1 Invoking PVS
PVS is invoked from a shell script named pvs in the PVS directory—this is a text file, and
may be examined or copied and modified to suit your taste. The script is a Bourne shell
script, and requires /bin/sh to execute correctly.1

PVS accepts a number of command-line arguments, as well as using environment vari-
ables. The command-line arguments specific to PVS are

-h | -help | --help - Print a brief description of the command line options and exit.

-lisp lispname - Specifies which lisp to use. The lisp image used for PVS is then pvs-

lispname, which should be located in a directory determined by the machine archi-
tecture. See Section 4.3, page 64 for details.

-redhat redhat-release - Specifies the release of the Redhat Linux operating system you
are using (different PVS binaries are required for libc5 and glibc C libraries). PVS at-
tempts to discover this for itself, but if the wrong binary is chosen you can specify 4 or
5 using this argument. Note that Redhat 6 uses the glibc libraries, which corresponds
to the value 5.

-runtime - This is only needed at SRI, where the development version of the system is
used by default. With this option the runtime image is used instead.

-emacs emacsname - Specifies the Emacs to use; see below for details.
1On some systems, /bin/sh is linked to the bash shell; this works as well.

61

62 4.1 Invoking PVS

-decision-procedures new|old - Sets the default decision procedures to be used in proofs.
See Section 3.5.3, page 27 for details.

-force-decision-procedures new|old - Forces the chosen decision procedure to be used
regardless of the default decision procedure setting or which decision procedures were
used in developing a proof. Note that with this option there is no way to switch be-
tween the new and old decision procedures.

-nw - Tells Emacs not to use its special interface to X.

-batch - Run PVS in batch mode. See chapter 5, page 67 for details.

-timeout: In batch mode, this causes typechecking and individual proof attempts to be
interrupted after the given number of seconds.

-nobg: Normally PVS starts in the background (with the & control operator). This starts
it in the foreground.

-raw: This runs PVS without Emacs. This is only useful for front ends, which must do the
same initialization as done by the Emacs interface.

-v number - Specifies verbosity level for PVS batch mode. See Chapter 5, page 67 for
details.

-q - A standard emacs option to inhibit loading of the users .emacs file, but extended in
PVS to inhibit loading of the users .pvsemacs, .pvsxemacs-options and .pvs.lisp
files on startup.

-patchlevel level - Specifies which patch files to load. Level none loads no patch files.
Level rel loads the file patch2 from your PVS directory, which usually contains the
release versions of PVS patches. Other valid levels are test (loads the files patch2
and patch2-test) and exp (loads the files patch2, patch2-test and patch2-exp).
This option is mainly used for PVS development.

Any other command-line arguments are passed directly to the underlying Emacs, including
those for X windows—these are discussed below.

In addition, the PVS script uses the environment variables PVSLISP, PVSEMACS, and
PVSXINIT, which may be set in your .cshrc or .login file to specify the defaults you
prefer. If both the environment variable and the corresponding command-line argument are
given, the command-line argument takes precedence. The PVSXINIT variable is described
in Section 4.4, page 64.

4.2 Emacs 63

4.2 Emacs
The PVS system uses Emacs as its user interface, and provides a number of files that ex-
tend Emacs for use with PVS. For historical reasons, there are currently a number of Emacs
editors available. Because we wanted PVS to be freely available, we have chosen to con-
centrate on just Gnu Emacs and XEmacs, which are also freely available. To find out what
version of Emacs you are using, start up Emacs and type M-x emacs-version. We try to
keep up with new releases of emacs and if necessary patch files will be made available to
support the new Emacs.

By default, the system uses emacs, which is assumed to be in your path when you start
up PVS. You may specify a different Emacs as specified above. When you start PVS, is
assumed (in order to supply X resources in the correct format) that if the name of the emacs
command contains the character “x” then you are using XEmacs.

PVS loads your ~/.emacs file first (assuming you have not specified the -q option as
described on page 62), followed by PVSPATH/emacs/go-pvs.el, which determines which
version of emacs you are running and then loads the rest of the PVS emacs files, including
ILISP. At this point you may receive an error from PVS saying that your Emacs version
is unknown. PVS does not support Emacs 18 (or earlier), but we try to keep up with new
Emacs versions as they are released. Finally, the ~/.pvsemacs is loaded. If you are run-
ning XEmacs, the .pvsemacs file will load XEmacs options from the .pvsxemacs-options
file instead of the standard .xemacs-options file, as some are incompatible with standard
XEmacs.

In loading the files in this order, PVS functions and key bindings will overwrite any
conflicting ones defined in your .emacs file. .pvsemacs is the file to use to override the key
bindings and definitions given by PVS. This approach was taken to ensure that the behavior
of PVS by default follows the user guide, but can be readily modified to suit your taste.

One file that is worth noting is thePVSPATH/emacs/emacs-src/pvs-abbreviations.

el file, where the abbreviations for many of the PVS commands are given. You may define
your own abbreviations for commands you use a lot that don’t currently have abbreviations,
by adding the appropriate lines in your .pvsemacs file. For example, adding

(pvs-abbreviate 'show-tccs 'st)

will make M-x st an abbreviation for M-x show-tccs in addition to those already defined.
Note that you cannot redefine a name which is already in use.

If you would like to byte-compile your Emacs customizations, create a separate file,
byte-compile it, and load it from your .pvsemacs. Generally the kinds of forms provided
in a .pvsemacs file are simply variable settings and minor function definitions, and are not
worth byte-compiling. It is only worthwhile if a function is being (re)defined that will be
invoked noninteractively and frequently, for example, if you want to modify the way the
process filter works.

/emacs/emacs-src/pvs-abbreviations.el
/emacs/emacs-src/pvs-abbreviations.el

64 4.4 Window Systems

4.3 The PVS Image
PVS currently runs under Allegro Common Lisp on a number of different platforms. PVS is
provided as a Common Lisp image, meaning that it includes both the Lisp runtime system
and the PVS programs, so you do not need to have Allegro installed on your system.

There is usually just one PVS image available at a given site, and if the system is prop-
erly installed, nothing further needs to be done. If more than one image is available, and
the default one is not the desired one, then it can be specified using either command-line
arguments or environment variables. Invoking PVS with

pvs -lisp lucid -image pvs-lucid-sun4

will use the pvs-lucid-sun4 image. Note that -lisp lucid must be specified, so that the
Emacs interface can be set up properly. For linux, also see the -redhat option on page 61.

Alternatively, the environment variables PVSLISP and PVSIMAGE may be set to get the
same effect. Note that command-line arguments take precedence.

After the PVS lisp image has started, it loads in the patch files as specified by the -

patchlevel argument and then loads the file .pvs.lisp from your home directory. This file
can be used to provide lisp customizations on a per user basis and for overriding definitions
in the patch file.

4.4 Window Systems
PVS was built primarily for the X window system, though it can be run from a terminal
interface. When run under X windows with the supported versions of Emacs, the resource
name will be set to PVS, and the window and icon names will be set to PVS@host, where
host is the host name of the system on which PVS was invoked. These may be modified by
adding command-line arguments or setting the PVSXINIT environment variable.

Youmay customize the title and icon names by defining the function pvs-title-string
in your .pvsemacs file taking no arguments and returning a string to be used as the title.
This function is invoked at startup, and whenever the context is changed. For example, the
following provides the name of the pvs path, the patch level (N for none, R for released, T
for test, and E for experimental), the hostname, and the last two components of the current
context.

(defun pvs-title-string ()

(format "%s%s%s:%s/"

(trailing-components pvs-path 1)

(cond ((stringp (cadddr *pvs-version-information*)) "E")

((stringp (caddr *pvs-version-information*)) "T")

((stringp (cadr *pvs-version-information*)) "R")

(t "N"))

(let ((host (car (string-split ?. (getenv "HOSTNAME")))))

(format "@%s" host))

(trailing-components *pvs-current-directory* 2)))

4.4 Window Systems 65

For example, this might generate pvs2.3N@photon:lib/finite_sets/.
It is difficult to get a single setting for all of the Emacs versions; the following table gives

the arguments needed to set the resource, window, and icon names for the various versions.

Emacs Resource Window Icon
emacs19 -rn -name

emacs19.29 (and later, -name

including emacs20)
xemacs -name -wn -in

Note: in emacs19, if -rn is not given, then -name is used for the resource name as well.
Emacs19.29 and later will give an error if the -rn argument is given.

The window name is the name used in the title bar of the PVS window, the icon name is
the name used in the icon, and the resource name is the name referred to in the .Xdefault
or .Xresource file that controls the defaults for X clients. An example entry for PVS in one
of these files might be

! PVS defaults

PVS.geometry: 80x63-0-0

PVS*pointerColor: Red

PVS*Font: *courier-medium-r-normal--12*

See the man pages for X and emacs, as well as the news and info pages for the version of
Emacs you are using for more details on X resources.

The PVSXINIT environment variable may be set2 to a string of command-line arguments
that are then appended to the defaults described above. You can also change the default
resource, window, and icon names, simply by adding them to this variable (or by including
them in the command-line arguments). Note that you should make certain that the version
of Emacs you are using matches the command-line arguments as shown in the footnote.
You can tell that there is a mismatch when you start up PVS and find buffers with names
matching command-line arguments, e.g., -in or PVS@acorn.

2Generally environment variables are set in your shell startup file, e.g., .profile or .cshrc.

pvs2.3N@photon:lib/finite_sets/

66 4.4 Window Systems

Chapter 5

Running PVS in Batch Mode

To support validation runs, PVS supports a batch mode, which means that specifications
and proofs being processed are not displayed. In batch mode there is no direct interaction
with PVS; it simply processes whatever files or functions are provided and terminates after
completing the last of them. PVS batch mode is built directly on the underlying Emacs
batch mode described in Section A.2 of the GNU Emacs Manual [8].

If PVS is invoked in batch mode from a shell, then it may be interrupted (using C-c),
suspended (C-z), or run as a background job. The output may be redirected to a file or piped
to another command.1

To run PVS in batch mode, simply include the ‘-batch’ option in your call to PVS.
In addition, you should include one or more Emacs source files and/or a Emacs or PVS
function to run, using the ‘-l’ or ‘-load’ option to load a file, and the ‘-f’ or ‘-funcall’
option for a function. For example:

pvs -batch -l test.el

pvs -batch -f pvs-version

Note that the function option is severely limited, as it only allows a function name. This
means that only functions that take no arguments may be provided, for example, pvs-
version or whereis-pvs.

Running PVS in batch mode does cause your ~/.emacs file to be loaded, in contrast to
running Emacs in batch mode. If you want to suppress the loading of your .emacs, include
the ‘-q’ option, for example:

pvs -batch -q -l test.el

In batch mode PVS suppresses messages by default, though you can print your own
messages. You can also control the amount of printout using the verbose option, ‘-v’, and
providing a level number ranging from 0 to 3. The following table summarizes the levels.

1The Emacs batch option actually sends its output to stderr rather than stdout; the pvs shell script
redirects this to stdout, as this is generally more useful and easier to work with.

67

68 5 Running PVS in Batch Mode

(pvs-message "Proving stamps2")

(change-context "~/pvs/test")

(let ((current-prefix-arg t))

(prove-pvs-file "stamps2"))

Figure 5.1: Batch File Example

level printout
0 User-defined pvs-messages only
1 Messages normally sent to the echo area and PVS errors
2 Status buffers
3 Proof replays

The pvs-message function is much like the Emacs message function, but the message
will get printed no matter what the level number is. If you want to print out only when the
level is 1 or higher, use message instead. Both take a control string and an arbitrary number
of arguments. An example is shown in Figure 5.1.

The file provided to the load option (‘-l’ or ‘-load’) is an ordinary Emacs file, and
usually has an .el extension. Inside this file you can invoke any PVS commands you want,
though many of them only make sense interactively. For example, the prove command
expects the cursor to be positioned at a given formula, which is difficult (though not im-
possible) to do in batch mode. The various Tcl/Tk commands available will not run at all
because there is no X display associated with PVS running in batch mode. The most useful
commands to run in batch mode are listed in Table 5.1. In that table, a filename is a PVS
file name without the .pvs extension, a theoryname is the name of a theory in the current
context, and a directory is a Unix pathname. These must all be given as strings (enclosed in
double quotes). The length and depth arguments are integers, and do not need any special
treatment. PVS Emacs commands are given in Emacs lisp syntax; for example,

(parse "foo")

(set-print-depth 3)

(save-context)

An example of the contents of a batch file is shown in Figure 5.1. This file consists of
three commands. It prints the message “Proving stamps2”, changes to the ~/pvs/test

context, and then reruns all the proofs of the specification file stamps2.pvs. Note that
current-prefix-arg is set to t to ensure that the proofs are retried. This is equivalent to
using C-u interactively. While PVS is running in batch mode, two possible kinds of error
may be encountered. An Emacs error comes from badly formed batch files or nonexistent
functions. These errors will cause the system to stop immediately, and the error will be
displayed if the level number is nonzero. A PVS error generates an error message (for a

5 Running PVS in Batch Mode 69

Command Arguments
parse filename
typecheck filename
typecheck-importchain filename
typecheck-prove filename
typecheck-prove-importchain filename
prove-theory theoryname
prove-pvs-file filename
prove-importchain theoryname
set-print-depth depth
set-print-length length
set-rewrite-depth depth
set-rewrite-length length
alltt-theory theoryname
alltt-pvs-file filename
alltt-importchain theoryname
latex-theory theoryname
latex-pvs-file filename
latex-importchain theoryname
latex-set-linelength length
change-context directory
save-context

pvs-remove-bin-files

pvs-dont-write-bin-files

pvs-do-write-bin-files

status-theory theoryname
status-pvs-file filename
status-importchain theoryname
status-importbychain theoryname
status-proof-theory theoryname
status-proof-pvs-file filename
status-proof-importchain theoryname
status-proofchain-theory theoryname
status-proofchain-pvs-file filename

Table 5.1: Commands available for validation

70 5.1 Validation Runs

(pvs-validate

"stamps2.log"

"~/pvs/test"

(pvs-message "Proving stamps2")

(set-rewrite-depth 0)

(let ((current-prefix-arg t))

(prove-pvs-file "stamps2")))

Figure 5.2: Example Use of pvs-validate

nonzero level number) and abandons the current command, but allows the system to go on
to the next command.

If an emacs error is encountered that reports ’entering debugger’ when run with ver-
bosity level 3, the full commands of the emacs debugger are available2. A useful command
to discover where your validation script encountered the error is:

e (progn (set-buffer "*Backtrace*")(buffer-string))

Another potential pitfall is that PVS may appear to hang. If this happens, try running
with verbosity level 3 as it is likely that PVS is awaiting user input (usually a yes/no). You
may respond to such prompts from the shell.

5.1 Validation Runs
A validation run is simply a batch run in which the pvs-validatemacro is used in the batch
file. Given a log file name, a directory, and a sequence of PVS Emacs commands, pvs-
validate will change context to the specified directory and run the commands, collecting
the output into the log file. It then compares the new results to the previous ones, and reports
whether there were any significant differences. An example of the use of pvs-validate is
shown in Figure 5.2.

Any number of pvs-validate forms may be used, and they may be freely intermixed
with other Emacs or PVS commands. When the sequence of commands associated with an
invocation of pvs-validate is complete, the log file is compared to the previous version,
if it exists. At this point PVS will report one of three messages:

• Nothing to compare log to - the log file has not been generated before this run.

• No significant changes in log - the current run does not differ significantly from
the last one. A significant difference is one that involves more than timing differences.

2See the Emacs manual[8] for details.

5.2 Example Validation Run 71

For example, the message proved in 27 seconds is not significantly different from
proved in 31 seconds.

• Differences found since last run - differences were found. The following line
indicates the two log files that should be compared to see where they differ.

This is normally all the output provided by PVS while processing a pvs-validate

macro, though you can get more information by including the ‘-v’ option as described
above.

With minor exceptions, the log files contain the same information as obtained with the
‘-v 3’ option, but only for the commands of the given pvs-validatemacro. In comparing
log files, timings are ignored.3

When a difference is reported, you can find out what the differences actually are by
starting up (an interactive) PVS, and bringing up the two files in a split window.4 Then use
M-x pvs-compare-validation-windows, which works much like the Emacs compare-

windows command, and will position the cursor at the point where the two files differ.
Again, differences in timing are ignored. After analyzing the difference, you can move
the pointer in each buffer to the next position where they are the same, and run M-x pvs-

compare-validation-windows again to get to the next difference. In this way you can
quickly analyze all the differences since the last validation run.

The log files are maintained under RCS [9], using the Emacs Version Control inter-
face [8]. The first time a validation run is made from a given directory, an RCS subdirectory
is created to keep the directory from being cluttered with RCS files. If this is the first valida-
tion run for a given log file, then the log file is created and registered to RCS. In subsequent
runs, the log file is compared to the previous version, which will have a name including the
version number, for example, stamps2.log.~1.8~. If the comparison shows no significant
differences, then the file is subsequently deleted.

Note that the log files are all kept in the directory fromwhich PVSwas run, and changing
context will not affect that. This makes it easy to maintain a single directory that controls
the validation for several different contexts.

5.2 Example Validation Run
Here is an example of a validation run for a very simple specification.

3In the future we may want to compare timings and report those that are significantly different, but in order
for this to work properly we must get CPU times rather than real times, and make sure that we are keeping
track of the machine used for the previous validation run For now we are only concerned with functional
correctness.

4In detail, start up PVS, use C-x C-f to visit the first file, use C-x 2 to split the window vertically, and
then use C-x C-f again to bring in the second file.

72 5.2 Example Validation Run

5.2.1 The Specification
The specification is in the file stamps.pvs:

stamps : THEORY

BEGIN

i, n3, n5: VAR nat

stamps: LEMMA (FORALL i: (EXISTS n3, n5: i+8 = 3*n3 + 5*n5))

END stamps

5.2.2 The Validation File
The file stamps.el has the validation commands. In this case we are simply going to
reprove the formulas of the specification file (there is only one):

(pvs-validate

"stamps.log"

"~/pvs-specs/validation"

(pvs-message "Proving stamps")

(let ((current-prefix-arg t))

(prove-pvs-file "stamps")))

5.2.3 The Validation Run
Here is the validation run, with level number 1. This shows the messages that normally
appear in the echo area at the bottom of the Emacs window (these messages are sent to
stdout):

% ./pvs -batch -l stamps.el -v 1

Started initializing ILISP

Finished initializing pvsallegro

Loading compiled patch file /project/pvs/patch2.fasl

Context changed to ~/pvs-specs/validation/

Checking out ~/pvs-specs/validation/stamps.log...

Checking out ~/pvs-specs/validation/stamps.log...done

PVS Version 2.3 (No patches loaded)

Context changed to ~/pvs-specs/validation/

Proving stamps

Parsing stamps

stamps parsed in 0.02 seconds

Typechecking stamps

stamps typechecked in 0.02s: No TCCs generated

Rerunning proof of stamps

Using old decision procedures

5.2 Example Validation Run 73

Proving stamps.stamps.

Proving stamps.stamps..

Proving stamps.stamps...

Proving stamps.stamps....

Proving stamps.stamps.....

Proving stamps.stamps......

Proving stamps.stamps.......

stamps proved in 2.20 real, 0.58 cpu seconds

stamps: 1 proofs attempted, 1 proved in 2.20 real, 0.58 cpu seconds

Checking out ~/pvs-specs/validation/stamps.log.~1.3~...

Checking out ~/pvs-specs/validation/stamps.log.~1.3~...done

No significant changes in stamps.log

Checking in ~/pvs-specs/validation/stamps.log...

Checking in ~/pvs-specs/validation/stamps.log...done

5.2.4 The Log File
The resulting log file stamps.log is shown here. This will be used for comparison to in
subsequent validation runs.

PVS Version 2.3 (No patches loaded)

Context changed to ~/pvs-specs/validation/

Proving stamps

Restoring theories from stamps.bin

Restored file stamps (stamps) in 0.57 seconds

Rerunning proof of stamps

Using old decision procedures

stamps :

|-------

{1} (FORALL i: (EXISTS n3, n5: i + 8 = 3 * n3 + 5 * n5))

Proving stamps.stamps.

Rerunning step: (INDUCT "i")

Proving stamps.stamps..

Inducting on i,

this yields 2 subgoals:

stamps.1 :

|-------

{1} (EXISTS (n3: nat), (n5: nat): 0 + 8 = 3 * n3 + 5 * n5)

Rerunning step: (INST + 1 1)

74 5.2 Example Validation Run

Instantiating the top quantifier in + with the terms:

1, 1,

this simplifies to:

stamps.1 :

|-------

{1} 0 + 8 = 3 * 1 + 5 * 1

Rerunning step: (ASSERT)

Simplifying, rewriting, and recording with decision procedures,

This completes the proof of stamps.1.

stamps.2 :

|-------

{1} (FORALL (j: nat):

(EXISTS (n3: nat), (n5: nat): j + 8 = 3 * n3 + 5 * n5)

IMPLIES (EXISTS (n3: nat), (n5: nat):

j + 1 + 8 = 3 * n3 + 5 * n5))

Rerunning step: (SKOSIMP*)

Repeatedly Skolemizing and flattening,

this simplifies to:

stamps.2 :

{-1} j!1 + 8 = 3 * n3!1 + 5 * n5!1

|-------

{1} (EXISTS (n3: nat), (n5: nat): j!1 + 1 + 8 = 3 * n3 + 5 * n5)

Rerunning step: (CASE "n5!1 = 0")

Case splitting on

Proving stamps.stamps...

n5!1 = 0,

this yields 2 subgoals:

stamps.2.1 :

{-1} n5!1 = 0

[-2] j!1 + 8 = 3 * n3!1 + 5 * n5!1

|-------

[1] (EXISTS (n3: nat), (n5: nat): j!1 + 1 + 8 = 3 * n3 + 5 * n5)

Proving stamps.stamps....

Rerunning step: (INST + "n3!1 - 3" 2)

Instantiating the top quantifier in + with the terms:

5.2 Example Validation Run 75

Proving stamps.stamps.....

n3!1 - 3, 2,

this yields 2 subgoals:

stamps.2.1.1 :

[-1] n5!1 = 0

[-2] j!1 + 8 = 3 * n3!1 + 5 * n5!1

|-------

{1} j!1 + 1 + 8 = 3 * (n3!1 - 3) + 5 * 2

Rerunning step: (ASSERT)

Simplifying, rewriting, and recording with decision procedures,

This completes the proof of stamps.2.1.1.

stamps.2.1.2 (TCC):

[-1] n5!1 = 0

[-2] j!1 + 8 = 3 * n3!1 + 5 * n5!1

|-------

{1} n3!1 - 3 >= 0

Rerunning step: (ASSERT)

Simplifying, rewriting, and recording with decision procedures,

This completes the proof of stamps.2.1.2.

This completes the proof of stamps.2.1.

stamps.2.2 :

[-1] j!1 + 8 = 3 * n3!1 + 5 * n5!1

|-------

{1} n5!1 = 0

[2] (EXISTS (n3: nat), (n5: nat): j!1 + 1 + 8 = 3 * n3 + 5 * n5)

Proving stamps.stamps......

Rerunning step: (INST + "n3!1 + 2" "n5!1 - 1")

Instantiating the top quantifier in + with the terms:

Proving stamps.stamps.......

n3!1 + 2, n5!1 - 1,

this yields 2 subgoals:

stamps.2.2.1 :

76 5.2 Example Validation Run

[-1] j!1 + 8 = 3 * n3!1 + 5 * n5!1

|-------

[1] n5!1 = 0

{2} j!1 + 1 + 8 = 3 * (n3!1 + 2) + 5 * (n5!1 - 1)

Rerunning step: (ASSERT)

Simplifying, rewriting, and recording with decision procedures,

This completes the proof of stamps.2.2.1.

stamps.2.2.2 (TCC):

[-1] j!1 + 8 = 3 * n3!1 + 5 * n5!1

|-------

{1} n5!1 - 1 >= 0

[2] n5!1 = 0

Rerunning step: (ASSERT)

Simplifying, rewriting, and recording with decision procedures,

This completes the proof of stamps.2.2.2.

This completes the proof of stamps.2.2.

This completes the proof of stamps.2.

Q.E.D.

stamps proved in 19 seconds

stamps: 1 proofs attempted, 1 proved in 19 seconds

Proof summary for theory stamps

stamps..proved - complete

Theory totals: 1 formulas, 1 attempted, 1 succeeded.

Grand Totals: 1 proofs, 1 attempted, 1 succeeded.

Appendix A

Unicode

Unicode may be used in PVS specifications. For example, Figure A.1 is a valid PVS theory.

Θ: THEORY

BEGIN

ℝ: TYPE = real

ℝ⁺: TYPE = posreal

ℚ: TYPE = rat

ℚ⁺: TYPE = posrat

ℤ: TYPE = int

ℤ⁺: TYPE = posint

ℕ: TYPE = nat

ℕ⁺: TYPE = posnat

ε, δ: VAR ℝ⁺

α: FORMULA ∀ ε: ∃ δ: ε ≠ δ;

⊕: [ℕ, ℕ -> ℕ]

β: FORMULA ⊕(3 ⊕ 4, 2) = 1

END Θ

Figure A.1: Example Unicode Theory

Most characters may be used in identifiers; a few are recognized as operators and, like
+, will always be separate tokens. These are discussed below.

The inclusion of Unicode has several aspects:

• PVS Grammar: Where are Unicode characters allowed?

• Display: How to render Unicode characters

• Input: How to insert Unicode characters

• LaTeX: How to include PVS specs in LaTeX

A.1 Unicode in PVS Syntax
Most Unicode characters are treated the same as alpha-numeric characters. The exceptions
are listed below.

77

78 A.2 Unicode Operators

A.2 Unicode Operators
These are the operators specially recognized by PVS, as either special, unary, binary infix,
or bracketing operators. All other Unicode characters are treated as letters within identi-
fiers. Unary and binary operators have precedence; most are grouped and are in the same
precedence as similar existing PVS operators. Rather than repeat the precedence informa-
tion in the PVS Language manual, we simply indicate one of the operators that share the
precedence. Of course, when in doubt, it’s easiest to add parentheses.

Note that most of these operators have no definition, they are provided for making new
definitions that are more readable or closer to standard mathematical usage. Those that
have definitions in the PVS prelude are indicated, but even those can be redefined, as PVS
supports overloading.

A.2.1 Alias Symbols

Table A.1: Unicode Aliases
Uni Input Equiv Unicode Name

𝜆 \lambda LAMBDA GREEK SMALL LETTER LAMDA

∀ \forall FORALL FOR ALL

∃ \exists EXISTS THERE EXISTS

⇔ \iff IFF LEFT RIGHT DOUBLE ARROW

⇒ \implies IMPLIES RIGHTWARDS DOUBLE ARROW

∨ \or OR LOGICAL OR

∧ \and AND LOGICAL AND

¬ \not NOT NOT SIGN

≠ \neq /= NOT EQUAL TO

∘ \circ o RING OPERATOR

§ \section ; SECTION SIGN

Note that capital lambda Λ is not the same as λ, and is available for identifiers.
§ (input \section) is used as an alternative to semi-colon (;) as a way of separating

declarations.

A.2.2 Unary operators
Unary operators may be used without parentheses, e.g., “□φ” is a valid term, and equivalent
to “□(φ)”.

Precedence same as for <>
□ \Box WHITE SQUARE

◇ \Diamond WHITE DIAMOND

Precedence same as for +
◯ \bigcirc LARGE CIRCLE

√ \surd SQUARE ROOT

A.2 Unicode Operators 79

Note that because of declaration parameters, the old ’[]’ operator is no longer allowed.
¬ is equivalent to NOT, unless redeclared
◯ is both unary and binary — much like ’+’ and ’-’. It is unary because it is useful as

a possible ’next’ operator.
√ is also both unary and binary and has the same precedence as unary ’+’ and ’-’. It’s

an obvious candidate for the ’sqrt’ operator.

A.2.3 Binary (infix) operators
The first ones have declarations in the prelude, and are intended as symbolic equivalents for
the given operator, and have the same precedence.

The rest are not declared in the prelude and are shown listed from lowest to highest
precedence. Precedence is indicated with relative to an existing operator, given in square
brackets.

Table A.3: Unicode Binary Operators
Uni Input Unicode Name
Precedence same as for |-
⊢ \vdash RIGHT TACK

⊨ \vDash TRUE

Precedence between @@ and +

≁ \nsim NOT TILDE

≃ \simeq ASYMPTOTICALLY EQUAL TO

≅ \cong APPROXIMATELY EQUAL TO

≇ \ncong NEITHER APPROXIMATELY NOR ACTUALLY EQUAL TO

≈ \approx ALMOST EQUAL TO

≉ \napprox NOT ALMOST EQUAL TO

≍ \asymp EQUIVALENT TO

≎ \Bumpeq GEOMETRICALLY EQUIVALENT TO

≏ \bumpeq DIFFERENCE BETWEEN

≐ \doteq APPROACHES THE LIMIT

≗ \circeq RING EQUAL TO

≙ \defs ESTIMATES

≡ \equiv IDENTICAL TO

⋈ \Join BOWTIE

≤ \leq LESS-THAN OR EQUAL TO

≥ \geq GREATER-THAN OR EQUAL TO

≦ \leqq LESS-THAN OVER EQUAL TO

Continued on next page

80 A.2 Unicode Operators

Uni Input Unicode Name
≧ \geqq GREATER-THAN OVER EQUAL TO

≨ \lneq LESS-THAN BUT NOT EQUAL TO

≩ \gneq GREATER-THAN BUT NOT EQUAL TO

≪ \ll MUCH LESS-THAN

≫ \gg MUCH GREATER-THAN

≮ \nless NOT LESS-THAN

≯ \ngtr NOT GREATER-THAN

≰ \nleq NEITHER LESS-THAN NOR EQUAL TO

≱ \ngeq NEITHER GREATER-THAN NOR EQUAL TO

≺ \prec PRECEDES

≻ \succ SUCCEEDS

▷ \rhd WHITE RIGHT-POINTING TRIANGLE

◁ \lhd WHITE LEFT-POINTING TRIANGLE

∈ \in ELEMENT OF

∉ \notin NOT AN ELEMENT OF

∋ \ni CONTAINS AS MEMBER

⊂ \subset SUBSET OF

⊃ \supset SUPERSET OF

⊄ \nsubset NOT A SUBSET OF

⊅ \nsupset NOT A SUPERSET OF

⊆ \subseteq SUBSET OF OR EQUAL TO

⊇ \supseteq SUPERSET OF OR EQUAL TO

⊊ \subsetneq SUBSET OF WITH NOT EQUAL TO

⊋ \supsetneq SUPERSET OF WITH NOT EQUAL TO

⊏ \sqsubset SQUARE IMAGE OF

⊐ \sqsupset SQUARE ORIGINAL OF

• \bullet BULLET

← \leftarrow LEFTWARDS ARROW

↑ \uparrow UPWARDS ARROW

→ \rightarrow RIGHTWARDS ARROW

↓ \downarrow DOWNWARDS ARROW

↝⇝ \leadsto RIGHTWARDS WAVE ARROW

↦ \mapsto RIGHTWARDS ARROW FROM BAR

⇐ \Leftarrow LEFTWARDS DOUBLE ARROW

⇑ \Uparrow UPWARDS DOUBLE ARROW

⇓ \Downarrow DOWNWARDS DOUBLE ARROW

∇ \nabla NABLA

⊣ \dashv LEFT TACK

⊥ \perp UP TACK

Continued on next page

A.2 Unicode Operators 81

Uni Input Unicode Name
⊩ \Vdash FORCES

◯ \bigcirc LARGE CIRCLE

★ \bigstar BLACK STAR

✠ \maltese MALTESE CROSS

Precedence same as for +
⊕ \oplus CIRCLED PLUS

⊖ \ominus CIRCLED MINUS

⨁ \bigoplus N-ARY CIRCLED PLUS OPERATOR

± \pm PLUS-MINUS SIGN

∓ \mp MINUS-OR-PLUS SIGN

∔ \dotplus DOT PLUS

⊞ \boxplus SQUARED PLUS

⊟ \boxminus SQUARED MINUS

⊎ \uplus MULTISET UNION

∪ \cup UNION

⊔ \sqcup SQUARE CUP

⋁ \bigvee N-ARY LOGICAL OR

⋃ \bigcup N-ARY UNION

Precedence same as for *
⊘ \oslash CIRCLED DIVISION SLASH

⊗ \otimes CIRCLED TIMES

⊙ \odot CIRCLED DOT OPERATOR

⊛ \circledast CIRCLED ASTERISK OPERATOR

⨂ \bigotimes N-ARY CIRCLED TIMES OPERATOR

⨀ \bigodot N-ARY CIRCLED DOT OPERATOR

× \times MULTIPLICATION SIGN

÷ \div DIVISION SIGN

⊠ \boxtimes SQUARED TIMES

∩ \cap INTERSECTION

⊓ \sqcap SQUARE CAP

⋀ \bigwedge N-ARY LOGICAL AND

⋂ \bigcap N-ARY INTERSECTION

A.2.4 Bracketing Operators
To use these, the left/right pair must be given a declaration (no space between), then they
can be used as brackets. For example:

⌊⌋(x: real): int = floor(x)

floorex: formula ⌊5.3⌋ = 5

⟨⟩ \langle \rangle) MATHEMATICAL LEFT/RIGHT ANGLE BRACKET

⟦⟧ \mlbracket \mrbracket MATHEMATICAL LEFT/RIGHT WHITE SQUARE BRACKET

«» \"< \"> LEFT/RIGHT-POINTING DOUBLE ANGLE QUOTATION MARK

⟪⟫ \mldata \mrdata MATHEMATICAL LEFT/RIGHT DOUBLE ANGLE BRACKET

⌈⌉ \lceil \rceil LEFT/RIGHT CEILING

⌊⌋ \lfloor \rfloor LEFT/RIGHT FLOOR

⌜⌝ \ulcorner \urcorner TOP LEFT/RIGHT CORNER

⌞⌟ \llcorner \lrcorner BOTTOM LEFT/RIGHT CORNER

82 A.3 Emacs and Unicode

A.3 Emacs and Unicode
In Emacs, non-ASCII characters are normally inserted using an input method. The PVS-TeX
input method is modified from the TeX input method, which uses backslash followed by the
character name, and uses TeX names.

See the last section of this for more on Emacs and Unicode.
Summary: M-x describe-char— describes the character under the cursorM-x set-input-

method (C-x RET C-
) — sets the input method M-x toggle-input-method (C-
) — toggles between input methods M-x describe-input-method (C-h I) — shows the

input sequences for all the characters handled by the method
The first thing to do is to get a font that supports Unicode. If you’re reading this in

Emacs, and the symbols are rendered correctly, then you’re set. Otherwise, both Mac and
Linux have a wide range of fonts available - search on the internet for options. Even if the
symbols do render correctly, another font may do a better job.

If the display is right, you can find out information about any character by putting the
cursor on that character and typing ’M-x describe-char’, which brings up a buffer containing
information about the character, including its Unicode name and input sequences.

To input a particular Unicode character, you can use ’C-x 8 RET’ and type in the name or
hex value — the internet can be used to find the character you’re looking for. However, it is
usually easier to use an input method. Most input methods are for particular languages; the
most useful one for the mathematical fonts described above is TeX, which mostly follows
the TeX commands for the same character. Use M-x set-input-method to select an input
method, and M-x toggle-input-method to switch between it and the previous one.

Appendix B

Introduction to Emacs

The PVS system uses the GNU Emacs system as its user interface. To make effective use
of PVS, you must become familiar with at least the basic Emacs commands. This section
provides an introduction to Emacs that should allow you to get started in PVS right away.
This Appendix introduces enough of the basic ideas and commands of Emacs to use PVS,
but to become effective you really should consult the GNU Emacs Manual [8]. It is also
quite helpful to run through the online tutorial. To do this, start up PVS or Emacs, type C-h
t, and follow the instructions.

Emacs provides the primary interface to the PVS system. We chose Emacs as our in-
terface for a number of reasons. First, it is freely available, and runs on a large number of
different platforms. It is also quite popular; on Unix systems the vi editor is probably the
only editor that is used more than Emacs, but it is too limited to use as a general-purpose
interface. In particular, it has no support for running subprocesses.

Emacs is an extremely flexible editor, and includes a built in programming language
(Emacs Lisp) which makes it easy to increase its functionality. There is a cost associated
with this. First, Emacs is rather large, and takes longer to start up than smaller editors such
as vi. Emacs is also quite complex, with a large number of commands and associated key
bindings that are not easy to learn.

Emacs is significantly different than other editors. In most editors, you start the editor,
get a file, make some changes, save the file, and exit. There is a tendency to think in terms
of “leaving” the current file in order to go to the next. To handle multiple files in a single
session usually requires extra care and some specialized commands. For example, vi can
only focus on one file at a time, with one alternate.

In Emacs multiple buffers may be open at once, and as many can be made visible as
your screen allows. Unlike other editors, buffers are not all associated with files. It is not
unusual to have over a hundred buffers associated with a single Emacs session. It is also
quite normal to have the same Emacs session up for weeks at a time.1 When you are done
editing and saving a given file, you do not exit from that buffer, you simply go on to the next
one.

1Some people have even been known to use Emacs as their shell.

83

84 B Introduction to Emacs

Unlike vi, there is no command mode. By default an Emacs buffer is in insert mode,
and most keys on the keyboard simply insert themselves. Emacs has a large number of in-
teractive commands, any of which may be bound to a key or key sequence.2 Any interactive
command may be invoked by typing M-x followed by the command. Recall that M-x is got-
ten by holding down the Meta- key and typing an x. If you don’t have a key labeled Meta-,
then look for and try the Alt or 3 keys. If you really don’t have a Meta- key, then the Esc
key will do, but in this case you must release the Esc key before typing the x.

Commandsmay be bound to key sequences, in order tomake typing easier. For example,
to page down repeatedly by typing M-x scroll-up over and over would get quite tedious,
so the key sequence C-v was bound to this command. This and most of the key bindings of
Emacs are not particularly mnemonic, but once learned they are extremely effective. With
a little practice you will find that you don’t think about what key sequence is needed to get
a particular effect—your hands just do it automatically.

Each buffer in Emacs has an associated major mode, and any number of minor modes.
The major mode indicates what kind of a buffer it is, and generally defines the key bindings
and functions associated with the buffer. This is usually determined from the file extension,
so for example the file foo.pvs is in pvs-mode, while a file foo.c would normally be in
c-mode. Minor modes modify the major mode. Examples include auto-fill-mode and
overwrite-mode.

When you start up PVS, you will see the PVS Welcome buffer, which takes up most of
the window. Toward the bottom of the window youwill see a line in inverse video; this is the
mode line. The last line of the window is the minibuffer. If you are running Emacs version
19 (or later) under X windows, then you will see a menu line at the top of the window, and
a scroll bar to the right. If you display more than one buffer in the window, then the bottom
of each buffer will have a mode line displaying information for that buffer. There will still
be only one minibuffer, however.3

The mode line provides information relating to the buffer above it. The first five char-
acters indicate whether the buffer is read-only, and whether the buffer has changed relative
to the file. If you see ---%%-, then the file is read-only, and you will not be allowed to
modify it. Sometimes this is set when you have copied a file from somewhere else, and you
think you should be able to make modifications. In that case, use the toggle-read-only

command, make your changes, and save the file. Emacs may still ask whether it should try
to save the file anyway, go ahead and answer yes in this case.

If the mode line is 5 dashes (-----), then the file can be modified but has not yet been
changed. Once modified, the mode line changes to --**-. If you did not intend to modify
the file, then use the undo commands described below to undo your change. If there are a
few changes, you may need to repeat the undo command until they are all backed out. If
there are a lot of changes, then M-x revert-buffermay be used to restore the buffer from

2It turns out that typing a letter key actually invokes the command self-insert-command.
3In Emacs 19 (and later versions), it is possible to have multiple windows, called frames, associated with

a single Emacs session. In this case, each frame by default has its own copy of the minibuffer. See the Emacs
manual for more details.

B.1 Leaving Emacs 85

the original file. The other information in themode line is the buffer name, possibly the time,
the mode of the buffer in parentheses, and the amount of the buffer currently displayed. Like
everything else in Emacs, the mode line is customizable; see the Emacs manual for details.

The minibuffer is used to display messages, echo longer commands as they are typed in,
and prompt for arguments. Many of these arguments support completion, which means that
you can type the start of an argument and type a TAB to have it automatically filled in. Emacs
will fill in as much as is unique, and then wait for more input. If it is ambiguous already,
Emacs will pop up a buffer with the possible completions in it. You can force it to show all
possible completions by typing a ?. Not all arguments support completion, but it is usually
worthwhile to try typing a TAB after typing the start of an argument to see if completion is
supported; if it is then you will either get a pop up buffer or a (partial) completion of what
you typed. Otherwise you will simply get a TAB inserted.

Each buffer has associated with it a current region, which is defined by two different
locations within the buffer, called point and mark. Point is normally the cursor position,
so any of the cursor motion commands automatically move point. Mark is not directly
displayed; it is set by command, and does not move until another mark setting command is
issued. There are a large number of Emacs commands that work on regions, though by far
the most common usage is for cutting and pasting operations.

B.1 Leaving Emacs
Command Aliases Function
save-buffers-kill-emacs C-x C-c Kill Emacs

This command exits Emacs, after first prompting whether to save each modified file.

B.2 Getting Help
Command Aliases Function
info C-h i Read Emacs documentation
help-with-tutorial C-h t Display the Emacs tutorial
command-apropos C-h a Show commands matching a string
describe-key C-h k Display name and documentation a key runs
describe-function C-h f Display documentation for function
describe-bindings C-h b Display a table of key bindings

These commands provide help. When you type the C-h prefix key, you are prompted
for the next key, and can type ? to find out all the possibilities—only a few are described
here.

The info command brings up a buffer containing the Emacs online documentation.
Type m followed by a topic name to view the info page for that topic, or click mouse button
2 over the highlighted name.

86 B.4 Buffers

The help-with-tutorial command brings up an Emacs tutorial. This tutorial is inter-
active, inviting you to try out the commands as it describes them. If you are new to Emacs,
you should try to go through this at least once.

The command-apropos command displays a list of those commands whose names con-
tain a specified substring. This is helpful if you know only part of a command name, or
suspect there is some command available for performing some task, but do not know what
it might be named. For example, you might do an C-h a on mail to find out what mail
commands are available. If you know the beginning of a command, it is usually better to
simply start typing the command and use the completion mechanism.

The describe-key and describe-function commands provide the same information,
but one prompts for a key and the other for a command (with completion). The key is not
necessarily a single keystroke, as some keystrokes are defined to be prefix keys. In this case
the key typed so far will be displayed in the minibuffer, and the function description will
not be given until a completed key sequence has been typed.

The describe-bindings command displays the key bindings in effect in a separate
buffer. Many of these key bindings are specific to the buffer mode, so issuing this command
from different buffers will generally lead to different results.

B.3 Files
Command Aliases Function
find-file C-x C-f Read a file into Emacs
save-buffer C-x C-s Save a file to disk

The file commands are needed to read a file into Emacs and save the changes. The
find-file creates a new buffer with the same name as the file and reads the file contents
into it. Completion is available on the file name, including the directory. If the file does not
exist, then an empty buffer is created. Note that the buffer is not the same as the file, and
changes made to the buffer are not reflected in the file until the file is saved.

The save-buffer command saves the current buffer to file. If the current buffer is not
associated with a file, you are prompted to give a file name.

B.4 Buffers
Command Aliases Function
switch-to-buffer C-x b Select another buffer
list-buffers C-x C-b List all buffers
kill-buffer C-x k Kill a buffer

The switch-to-buffer command is used to switch control from one buffer to another.
When you type the command, you will be prompted for a new buffer to switch to, and a
default will be given. If the default is the right one, simply type the return key. Otherwise

B.5 Cursor Motion commands 87

type in the name of the buffer you desire. Completion is available. If the buffer specified
does not already exist, then it is created.

The kill-buffer command is used to remove a buffer. Completion is available. Note
that some buffers have processes associated with them, and killing that buffer also kills the
associated process. In particular, the *pvs* buffer is associated with the PVS process.

The list-buffers command lists all the buffers currently available, along with an in-
dication of whether the buffer has changed, its size, its major mode, and its associated file,
if any.

B.5 Cursor Motion commands
Command Aliases Function
forward-char C-f Move forward one character
backward-char C-b Move backward one character
forward-word C-f Move forward one word
backward-word C-b Move backward one word
next-line C-n Move down one line vertically
previous-line C-p Move up one line vertically
beginning-of-line C-a Move to the beginning of the line
end-of-line C-e Move to the end of the line
beginning-of-buffer M-< Move to the beginning of the buffer
end-of-buffer M-< Move to the end of the buffer

These are largely self explanatory; the best way to get used to what they do is to simply
try them out. Note that, depending on your Emacs environment, you may have appropriate
key bindings for the arrow, Home, PageUp, etc. keys.4

B.6 Error Recovery
Command Aliases Function
keyboard-quit C-g Abort partially typed or executing command
undo C-x u, C-_ Undo one batch of changes
revert-buffer Revert the buffer to the file contents
recenter C-l Redraw garbaged screen

C-g is used if you start to type a command and change your mind, or a command is
running and you want to abort it. Sometimes it takes two or three invocations before it has
the desired effect. For example if you started an incremental search, the first C-g erases
some of the input and the second actually quits the incremental search.

The undo command is the normal way to undo changes made to the current buffer. If you
undo twice in a row, then the last two changes are undone. In this manner you can eventually
undo all the changes made to a buffer. Once you type something other than an undo, all the
previous undo commands are treated as changes that themselves can be undone.

4As described above, you can find out what these are bound to by typing C-h k followed by the key.

88 B.8 Killing and Deleting

If you made a large number of changes to a file buffer and simply want to go back to the
original file contents, use M-x revert-buffer. Note that if you have changed the file and
saved it, then reverting will bring back the saved version, not the earlier one.

B.7 Search commands
Command Aliases Function
isearch-forward C-s Incremental search forward
isearch-backward C-r Incremental search backward

These search through the text for a specified string. The search is incremental in that it
starts searching as soon as a character is typed in, finding the first occurrence of the string
typed in so far. If the string can’t be found, the minibuffer changes its prompt from I-

search: to Failing I-search:. If it finds the string, but you wish to go on to the next
(previous) occurrence, type another C-s (C-r). To terminate the search, type the Enter key,
or any other Emacs command. Consult the Emacs manual for other useful options available
for search.

B.8 Killing and Deleting
Command Aliases Function
delete-next-character C-d Delete next character
delete-backward-char DEL Delete previous character
kill-word M-d Kill word
backward-kill-word M-DEL Kill word backwards
kill-line C-k Kill rest of line
kill-region C-w Kill region
copy-region-as-kill M-w Save region a killed text without killing

These commands delete or kill the specified entities. The difference between killing
and deleting is that a killed entity is copied to the kill ring, and can be yanked later, while
deleted entities are not. The kill ring is a stack of blocks of text that have been killed, with
the most recent kills at the top. The kill ring is not associated with any specific buffer, and
in this respect acts much like a clipboard found in most window systems.

The delete-backward-char command is frequently mapped onto the Backspace key
instead; you may need to experiment with this. If you want it mapped to the Backspace key,
it is usually easier to map it outside of Emacs, for example using the xmodmap command.
This is because by default the Backspace key and the C-h key are indistinguishable by
Emacs, and the C-h key is used for accessing various Emacs help functions.

The kill-line command kills from the current cursor location to the end of the line,
unless it is already at the end of the line, in which case it kills the newline, thus merging the
current line with the following one.

The copy-region-as-kill command is similar to the kill-region command, but
does not actually kill any text. This is useful when trying to copy text from a file for which

B.9 Yanking 89

you do not have write access, since Emacs will not let you modify such a buffer without
first changing its read-only status.

B.9 Yanking
Command Aliases Function
yank C-y Yank last killed test
yank-pop M-y Replace last yank with previous kill

The yank command puts the text of the most recent kill command into the buffer at the
current cursor position. Note that the usual way to move text from one place to another in
Emacs is to kill it, move the cursor to the new location, and yank it. Because the kill ring is
globally used, this works across buffers as well.

The yank-pop command may only be used after the yank command, and has the effect
of replacing the yanked text with earlier killed text from the kill ring.

B.10 Marking
Command Aliases Function
set-mark-command C-@, C-SPC Set mark here
exchange-point-and-mark C-x C-x Exchange point and mark

The set-mark command sets the mark to the current cursor position. Since point is also
at the current cursor position, this defines an empty region initially. As the cursor is moved
away from the mark position, the region grows. Note that the relative positions of mark and
point do not matter; the region is defined as the text between these two positions.

C-x C-x is used to exchange the point and mark positions, moving the cursor to where
mark was last set, and setting mark to the old cursor position. Doing this again puts mark
and point back where they started. This is useful for checking that the region is as desired,
before doing any destructive operations.

90 B.10 Marking

Bibliography

[1] Leslie Lamport. LATEX: A Document Preparation System. Addison-Wesley Publishing
Company, Reading, MA, 2 edition, 1994. 1, 47

[2] John K. Ousterhout. Tcl and the TK Toolkit. Professional Computing Series. Addison-
Wesley, 1994. 50

[3] S. Owre, N. Shankar, J. M. Rushby, and D. W. J. Stringer-Calvert. PVS Language Ref-
erence. Computer Science Laboratory, SRI International, Menlo Park, CA, September
1999. 1, 2, 20, 22, 56

[4] Sam Owre and Natarajan Shankar. Abstract datatypes in PVS. Technical Report SRI-
CSL-93-9R, Computer Science Laboratory, SRI International, Menlo Park, CA, De-
cember 1993. Extensively revised June 1997; Also available as NASA Contractor Re-
port CR-97-206264. 1

[5] SamOwre andNatarajan Shankar. The formal semantics of PVS. Technical Report SRI-
CSL-97-2, Computer Science Laboratory, SRI International, Menlo Park, CA, August
1997. 1

[6] John Rushby and David W. J. Stringer-Calvert. A less elementary tutorial for the PVS
specification and verification system. Technical Report SRI-CSL-95-10, Computer Sci-
ence Laboratory, SRI International, Menlo Park, CA, June 1995. Revised, July 1996.
Available, with specification files, at http://www.csl.sri.com/csl-95-10.html. 1

[7] N. Shankar, S. Owre, J. M. Rushby, and D. W. J. Stringer-Calvert. PVS Prover Guide.
Computer Science Laboratory, SRI International, Menlo Park, CA, September 1999. 1,
11, 12, 22, 31, 32, 33, 60

[8] Richard M. Stallman. GNU Emacs Manual. Free Software Foundation, 675 Mas-
sachusetts Ave., Cambridge, MA, 13th edition, July 1997. 1, 17, 67, 70, 71, 83

[9] Walter F. Tichy. RCS—A System for Version Control. Department of Computer Sci-
ences, Purdue University, West Lafayette, IN, July 1985. 71

91

http://www.csl.sri.com/csl-95-10.html

Index

Auto-Rewrites buffer, 33
Proof buffer, 32
mail buffer, 43
pvs buffer, 23, 24, 38, 60
-batch command line argument, 62
-decision-procedures command line argument, 62
-emacs command line argument, 61
-force-decision-procedures command line argument, 62
-help command line argument, 61
-lisp command line argument, 61
-nobg command line argument, 62
-nw command line argument, 62
-patchlevel command line argument, 62
-q command line argument, 62
-raw command line argument, 62
-redhat command line argument, 61
-runtime command line argument, 61
-timeout command line argument, 62
-v command line argument, 62
.bin, 55
.emacs, 63
.ppe buffer, 23, 28, 29, 40
.pvs buffer, 28, 29, 59
.pvsemacs, 53, 55, 63
.tccs buffer, 23, 28, 29, 40
3 key, 7

Add Declaration buffer, 34
add-declaration, 34
alf, 45
ali, 45
alltt-importchain, 45
alltt-proof, 45
alltt-pvs-file, 45
alltt-theory, 45
alp, 45
alt, 45
Alt key, 7
ancestry, 32
Ancestry buffer, 33
antecedent, 11

Backspace, 88
backward-char, 87
backward-kill-word, 88
backward-theory, 19
backward-word, 87
beginning-of-buffer, 87
beginning-of-line, 87
browsing, 4

buffers
Auto-Rewrites, 33
Proof, 32
mail, 43
pvs, 23, 24, 38, 60
.ppe, 23, 28, 29, 40
.pvs, 28, 29, 59
.tccs, 23, 28, 29, 40
Add Declaration, 34
Ancestry, 33
Expanded Sequent, 33
Hidden, 33
Language Help, 18
Modify Declaration, 34
Orphaned Proofs, 30
PVS Error, 20
PVS Help, 18
PVS Log, 58, 59
PVS Release Notes, 19
PVS Status, 57–59
PVS Welcome, 55
Proof Display, 32, 33
Proofs File, 30
Proof, 24, 28–30, 38
Prover Emacs Help, 19
Prover Help, 18
Show Proofs, 30
Siblings, 33
View Proof, 30

C-., 56
C-@, 89
C-c ;, 19
C-c], 19
C-c C-a f, 45
C-c C-a i, 45
C-c C-a p, 45
C-c C-a t, 45
C-c C-c, 24, 34, 35, 43, 59, 60
C-c C-f, 8, 40
C-c C-h b, 18
C-c C-h c, 18
C-c C-h e, 18
C-c C-h l, 18
C-c C-h p, 18
C-c C-h r, 18
C-c C-h s, 18
C-c C-i, 28, 30
C-c C-l f, 46
C-c C-l i, 46

92

INDEX 93

C-c C-l P, 46
C-c C-l p, 46
C-c C-l s, 46
C-c C-l t, 46
C-c C-l v, 46
C-c C-p f, 25
C-c C-p i, 25
C-c C-p n, 23
C-c C-p p, 25
C-c C-p r, 23
C-c C-p s, 23
C-c C-p t, 25
C-c C-p U, 25
C-c C-p u, 25
C-c C-p X, 23
C-c C-p x, 23
C-c C-q d, 39
C-c C-q e, 39
C-c C-q f, 39
C-c C-q i, 39
C-c C-q r, 39
C-c C-q s, 10, 39
C-c C-q t, 39
C-c C-s b, 57
C-c C-s f, 57
C-c C-s i, 57
C-c C-s p, 58
C-c C-s t, 57
C-c C-t, 10, 20, 44
C-c h, 18
C-c p, 11, 23
C-c s, 28
C-c x, 28
C-g, 59, 87
C-h a, 85
C-h b, 85
C-h d, 36
C-h f, 85
C-h i, 85
C-h k, 85
C-h t, 85
C-M-;, 56
C-M-\, 39
C-M-q, 39
C-SPC, 89
C-x C-c, 7, 17
C-x C-f, 8
C-x C-s, 43
C-x C-x, 89
C-x C-z, 17
C-x k, 60
C-y, 89
C-z C-g, 59
cc, 53
change-context, 53
command-apropos, 85
command-line arguments, 61
comment-region, 19
Common Lisp, 1
consequent, 11
context-path, 53
Conversion, 22
copy-region-as-kill, 88
cp, 53

current branch, 11
current context, 2
current sequent, 11
customization, 61

datatypes, 2
delete-backward-char, 88
delete-next-character, 88
delete-pvs-file, 42
delete-theory, 42
describe-bindings, 85
describe-function, 85
describe-key, 85
df, 42
DISPLAY, 50
display-proofs-formula, 28
display-proofs-pvs-file, 28
display-proofs-theory, 28
dt, 42
dump-pvs-files, 44
dump-sequents, 28

edit-proof, 28, 30
edit-pvs-dump-file, 44
Emacs, 63
emacs-version, 63
end-of-buffer, 87
end-of-line, 87
environment, see PVS environment
environment variables, 62

DISPLAY, 50
PVSEMACS, 62
PVSLISP, 62
PVSXINIT, 62, 64

exchange-point-and-mark, 89
exit-pvs, 17
Expanded Sequent buffer, 33
explain-tcc, 32

ff, 40
find-declaration, 56, 57
find-file, 86
find-pvs-file, 40
find-theory, 40
find-unbalanced-pvs, 19
forward-char, 87
forward-theory, 19
forward-word, 87
ft, 40

Gnu Emacs, 1
go-pvs.el, 63
goto-declaration, 56

help-pvs, 18
help-pvs-bnf, 18
help-pvs-language, 18
help-pvs-prover, 18
help-pvs-prover-command, 18, 37
help-pvs-prover-emacs, 18
help-pvs-prover-strategy, 18
help-with-tutorial, 85
Hidden buffer, 33
hide-body, 44

94 INDEX

html-pvs-file, 48
html-pvs-files, 48

icon name, 64
ILISP, 63
imf, 42
import chain, 25
import chain subtree, 25
import-pvs-file, 42
import-theory, 42
imt, 42
info, 85
install-and-step-proof, 28
install-and-x-step-proof, 28
install-proof, 28
install-pvs-proof-file, 28
installing PVS, 1
invoking PVS, 61
isearch-backward, 88
isearch-forward, 88

judgements, 22

keyboard-quit, 87
kill-buffer, 60, 86
kill-line, 88
kill-region, 88
kill-word, 88

Language Help buffer, 18
LATEX, 14
LATEX, 1
latex-importchain, 46
latex-proof, 46
latex-proof-view, 46
latex-pvs-file, 46
latex-set-linelength, 46
latex-theory, 46
latex-theory-view, 14, 46
lf, 53
libraries, 3
list-buffers, 86
list-declarations, 56
list-pvs-files, 53
list-theories, 53
load-prelude-library, 55
load-pvs-strategies, 28
lpv, 46
lt, 53
ltf, 46
lti, 46
ltp, 46
lts, 46
ltt, 46
ltv, 14, 46

M-', 56
M-,, 56
M-., 56
M-:, 56
M-;, 56
M-{, 19
M-}, 19
M-n, 11, 36

M-p, 11, 36
M-s, 11, 36
M-w, 88
M-y, 89
Meta key, 7
Modify Declaration buffer, 34
modify-declaration, 34

new-pvs-file, 41
new-theory, 41
next-line, 87
nf, 41
nt, 41

obtaining PVS, 1
orphaned proofs, 30, 42
Orphaned Proofs buffer, 30

pa, 19
parse, 10, 19
parser, 3
ppd, 39
ppe, 39
ppf, 39
ppr, 39
ppt, 39
ppti, 39
pr, 11, 23
prelude, 2, 41
prettyprint-declaration, 39
prettyprint-expanded, 39
prettyprint-pvs-file, 39
prettyprint-region, 39
prettyprint-theory, 39
prettyprint-theory-instance, 39
prettyprinter, 3
previous-line, 87
prf, 25
prff, 25
prfi, 25
prfs, 25
prft, 25
pri, 25
print-importchain, 45
print-pvs-file, 45
print-theory, 45
pris, 25
prnext, 23
Proof buffer, 24, 28–30, 38
proof chain, 25
proof chain analysis, 5
Proof Display buffer, 32, 33
proof obligations, 10
proof status commands, 26
proof stepper, 38
proof tree, 11
Proofs File buffer, 30
Prototype Verification System (PVS), 1
prove, 11, 23
prove-formulas-importchain, 25
prove-formulas-importchain-subtree, 25
prove-formulas-pvs-file, 25
prove-formulas-theory, 25
prove-importchain, 25

INDEX 95

prove-importchain-subtree, 25
prove-importchain-subtree-using-default-dp, 27
prove-importchain-using-default-dp, 27
prove-next-unproved-formula, 23
prove-proofchain, 25
prove-proofchain-using-default-dp, 27
prove-pvs-file, 25
prove-pvs-file-using-default-dp, 27
prove-tccs-importchain, 25
prove-tccs-importchain-subtree, 25
prove-tccs-pvs-file, 25
prove-tccs-theory, 25
prove-theories, 25
prove-theories-using-default-dp, 27
prove-theory, 25
prove-theory-using-default-dp, 27
prove-untried-importchain, 25
prove-untried-importchain-subtree, 25
prove-untried-pvs-file, 25
prove-untried-theory, 25
prover, 22
prover commands

assert, 12
expand, 12
flatten, 12
induct, 11
postpone, 11
skolem!, 12

Prover Emacs Help buffer, 19
Prover Help buffer, 18
proving, 4
prp, 25
prr, 23
prs, 23
prt, 25
pruf, 25
prui, 25
prus, 25
prut, 25
ptf, 45
pti, 45
ptt, 45
PVS

command-line arguments, 61
environment variables, 62
icon name, 64
libraries, 3
lisp image, 64
prelude, 2
resource name, 64
window name, 64

pvs, 7
pvs, 58, 60
PVS context, 2
PVS customization, 61
PVS environment, 1
PVS Error buffer, 20
PVS Help buffer, 18
PVS language, 2
PVS Log buffer, 58, 59
PVS Release Notes buffer, 19
PVS shell script, 61
PVS Status buffer, 57–59
PVS Welcome buffer, 55

pvs-abbreviations.el, 63
pvs-do-write-bin-files, 53
pvs-dont-write-bin-files, 53
pvs-help, 8, 18
pvs-help-bnf, 18
pvs-help-language, 18
pvs-help-prover, 18
pvs-help-prover-command, 18
pvs-help-prover-emacs, 18
pvs-help-prover-strategy, 18
pvs-interrupt-subjob, 59
pvs-load-patches, 58
pvs-log, 58
pvs-mode, 58
pvs-print-buffer, 45
pvs-print-region, 45
pvs-prover-any-command, 35
pvs-prover-apply-extensionality, 37
pvs-prover-assert, 37
pvs-prover-auto-rewrite, 37
pvs-prover-auto-rewrite-theory, 37
pvs-prover-bddsimp, 37
pvs-prover-beta, 37
pvs-prover-case, 37
pvs-prover-case-replace, 37
pvs-prover-decompose-equality, 37
pvs-prover-delete, 37
pvs-prover-do-rewrite, 37
pvs-prover-expand, 37
pvs-prover-extensionality, 37
pvs-prover-flatten, 37
pvs-prover-grind, 37
pvs-prover-ground, 37
pvs-prover-hide, 37
pvs-prover-iff, 37
pvs-prover-induct, 37
pvs-prover-induct-and-simplify, 37
pvs-prover-inst, 37
pvs-prover-inst-question, 37
pvs-prover-lemma, 37
pvs-prover-lift-if, 37
pvs-prover-many-proof-steps, 38
pvs-prover-model-check, 37
pvs-prover-musimp, 37
pvs-prover-name, 37
pvs-prover-one-proof-step, 38
pvs-prover-postpone, 37
pvs-prover-prop, 37
pvs-prover-quit, 37
pvs-prover-quotes, 35
pvs-prover-replace, 37
pvs-prover-replace-eta, 37
pvs-prover-rewrite, 37
pvs-prover-skip-one-proof-step, 38
pvs-prover-skolem-bang, 37
pvs-prover-skosimp, 37
pvs-prover-skosimp-star, 37
pvs-prover-split, 37
pvs-prover-tcc, 37
pvs-prover-then, 37
pvs-prover-typepred, 37
pvs-prover-undo, 37
pvs-prover-undo-many-proof-steps, 38
pvs-prover-undo-one-proof-step, 38

96 INDEX

pvs-prover-wrap-with-parens, 35
pvs-release-notes, 18
pvs-remove-bin-files, 53
pvs-set-linelength, 39
pvs-set-proof-default-description, 32
pvs-set-proof-parens, 32
pvs-set-proof-prompt-behavior, 32
pvs-status, 58, 59
pvs-strategies file, 26, 31
pvs-version, 58
pvs-x-show-proofs, 53
PVSEMACS, 62
PVSLISP, 62
PVSXINIT, 62, 64

recenter, 87
redo-proof, 23
remove-prelude-library, 55
remove-proof, 28
reset-pvs, 59
resource name, 64
revert-buffer, 87
rmail-pvs-files, 43

save-buffer, 86
save-buffers-kill-emacs, 85
save-context, 18, 53
save-pvs-buffer, 43
save-pvs-file, 43
save-some-pvs-files, 43
sc, 53
sequent, 11
set-decision-procedure, 27
set-mark-command, 89
set-print-depth, 28
set-print-length, 28
set-print-lines, 28
set-proof-backup-number, 32
set-rewrite-depth, 28
set-rewrite-length, 28
Show Proofs buffer, 30
show-auto-rewrites, 32
show-current-proof, 30, 32
show-declaration, 56
show-declaration-tccs, 39
show-expanded-form, 56
show-expanded-sequent, 32
show-hidden-formulas, 32
show-last-proof, 14, 32
show-orphaned-proofs, 28
show-proof, 28
show-proof-backup-number, 32
show-proof-file, 28
show-proofs-importchain, 28
show-proofs-pvs-file, 28
show-proofs-theory, 28
show-pvs-file-conversions, 22
show-pvs-file-messages, 22
show-pvs-file-warnings, 22
show-skolem-constants, 32
show-tccs, 10, 39
show-theory-conversions, 22
show-theory-messages, 22
show-theory-warnings, 22

siblings, 32
Siblings buffer, 33
smail-pvs-files, 43
sp, 58
spc, 58
spcf, 58
spci, 58
spct, 58
specifications, 2
spf, 58
spi, 58
spt, 14, 58
ssf, 43
starting PVS, 61
status, 5
status-display, 58
status-importbychain, 57
status-importchain, 57
status-proof, 58
status-proof-importchain, 58
status-proof-pvs-file, 58
status-proof-theory, 14, 58
status-proofchain, 14, 58
status-proofchain-importchain, 58
status-proofchain-pvs-file, 58
status-proofchain-theory, 58
status-pvs-file, 57
status-theory, 57
stb, 57
step-proof, 23
stf, 57
sti, 57
stt, 57
suspend-pvs, 17
switch-to-buffer, 86

TAB ', 35
TAB *, 37
TAB 1, 38
TAB 8, 37
TAB =, 37
TAB ?, 37
TAB #, 38
TAB !, 37
TAB @, 38
TAB A, 37
TAB a, 37
TAB B, 37
TAB b, 37
TAB C, 37
TAB c, 37
TAB C-a, 37
TAB C-h, 37
TAB C-j, 35
TAB C-q, 37
TAB C-s, 37
TAB C-t, 37
TAB C-u, 38
TAB D, 37
TAB d, 37
TAB E, 37
TAB e, 37
TAB F, 37
TAB f, 37

INDEX 97

TAB G, 37
TAB g, 37
TAB H, 37
TAB I, 37
TAB i, 37
TAB L, 37
TAB l, 37
TAB M, 37
TAB m, 37
TAB n, 37
TAB P, 37
TAB p, 37
TAB R, 37
TAB r, 37
TAB S, 37
TAB s, 37
TAB T, 37
TAB t, 37
TAB TAB, 35
TAB U, 38
TAB u, 37
TAB x, 37
tc, 10, 20
tcc strategy, 26
TCCs, 10–11
tccs, 10, 39
tci, 20
Tcl/Tk, 50
tcp, 20
tcpi, 20
theories, 2
toggle-proof-prettyprinting, 28
type-correctness condition (TCC), 4
typecheck, 10–11
typecheck, 10, 20
typecheck-importchain, 20
typecheck-prove, 20
typecheck-prove-importchain, 20
typechecker messages, 22
typechecker warnings, 22
typechecking, 4

undo, 87
undump-pvs-files, 44
usedby-proofs, 32
user interface, 3

View Proof buffer, 30
view-library-file, 40
view-library-theory, 40
view-prelude-file, 40
view-prelude-theory, 40
vlf, 40
vlt, 40
vpf, 40
vpt, 40

welcome screen, 7
whereis-declaration-used, 56
whereis-identifier-used, 56
whereis-pvs, 58
window name, 64
write-file, 43

X windows, 64
x-prove, 23
x-prover-commands, 18, 19
x-show-current-proof, 50
x-show-proof, 50
x-step-proof, 23
x-theory-hierarchy, 50
xdvi, 14
XEmacs, 1
xpr, 23
xsp, 23

yank, 89
yank-pop, 89

	Contents
	Introduction
	A Brief Tour of PVS
	Creating the Specification
	Parsing and Typechecking
	Proving
	Status
	Generating LaTeX

	PVS Commands
	Exiting PVS
	Getting Help
	Editing PVS Files
	Parsing and Typechecking
	Parsing
	Typechecking
	Typechecking Information

	Proving
	Proving a Single Formula
	Proving Sets of Formulas
	Selecting Decision Procedures
	Editing and Viewing Proofs
	Displaying Proof Information
	Adding and Modifying Declarations
	Prover Emacs Commands
	General Commands
	Prover Commands
	Proof Stepper Commands

	Prettyprinting
	Viewing TCCs
	PVS Files and Theories
	Finding Files and Theories
	Creating New Files and Theories
	Importing Files and Theories
	Deleting Files and Theories
	Saving Files
	Mailing PVS Files
	Dumping Files

	PVS Output
	Printing Buffers and Regions
	Printing Files and Theories
	Generating alltt Output
	Generating LaTeX Output

	Generating HTML
	Display Commands
	Context Commands
	Library Commands
	Browsing
	Theory Status
	Proof Status
	Environment Commands
	Interrupting PVS

	Customizing PVS
	Invoking PVS
	Emacs
	The PVS Image
	Window Systems

	Running PVS in Batch Mode
	Validation Runs
	Example Validation Run
	The Specification
	The Validation File
	The Validation Run
	The Log File

	Unicode
	Unicode in PVS Syntax
	Unicode Operators
	Alias Symbols
	Unary operators
	Binary (infix) operators
	Bracketing Operators

	Emacs and Unicode

	Introduction to Emacs
	Leaving Emacs
	Getting Help
	Files
	Buffers
	Cursor Motion commands
	Error Recovery
	Search commands
	Killing and Deleting
	Yanking
	Marking

	Bibliography
	Index

