
'

&

$

%

Random Testing in PVS

Sam Owre

owre@csl.sri.com

URL: http://www.csl.sri.com/~owre/

Computer Science Laboratory

SRI International

Menlo Park, CA

August 21, 2006

Sam Owre AFM06 presentation: 1



'

&

$

%

Random Testing in PVS

• Random testing can be an effective way to test code

• It has recently been applied to functional programs

(QuickCheck) [Claessen and Hughes 2000] and to

Isabelle/HOL specifications [Berghofer and Nipkow

2004]

• Here we describe the implementation in PVS, along

with examples of use, and some future plans

Sam Owre AFM06 presentation: 2



'

&

$

%

Basic Process

• A universally quantified formula is given - usually

derived from a sequent, but may be directly supplied in

the ground evaluator

• For each variable, a random value generator is created

based on the type

• The random test then executes the following loop:

◦ the generators are invoked

◦ the results are substituted into the formula

◦ the formula is translated to lisp and evaluated

◦ if the result is false, the values are printed and the

loop terminates

◦ otherwise, the loop continues until the loop counter

is reached

Sam Owre AFM06 presentation: 3



'

&

$

%

Random Value Generators

• Random value generators are closures defined on

ground types - no uninterpreted types or constants

involved

• For the basic types bool and enumeration types, the

lisp random function is invoked on the size of the type,

and the result is mapped to the corresponding element

• For below(i) and upto(i), or subrange(i, j), the lisp

random function is invoked with the obvious mapping

• Natural numbers are generated between 0 and the size

parameter

• Integers are generated between -size and size

• Random rationals (and reals) are gotten by generating

a numerator and a nonzero denominator

Sam Owre AFM06 presentation: 4



'

&

$

%

Random Component Types

• Random values for record and tuple types are generated

component-wise

• Random values for cotuples have two parts:

◦ a random selection of the component

◦ a random value generated for that component type

Sam Owre AFM06 presentation: 5



'

&

$

%

Random Function Generators

• For function types, a closure is created that memoizes

the values it produces

• When the function is applied to a value it has been

applied to before, that value is returned

• Otherwise a new random value is generated for the

range type, and associated with the argument value

• Note that this only works for function applications -
this does not work:

∀ (F: [[real -> real] -> bool], g:[real -> real]): F(g)

Sam Owre AFM06 presentation: 6



'

&

$

%

Subtypes

• In general, values are randomly generated for the

supertype until one is found that satisfies the subtype

predicate

• This can be very ineffective - it depends on both the

probability of satisfying the predicate as well as the

computational cost of the predicate

Sam Owre AFM06 presentation: 7



'

&

$

%

Datatypes

• These are generated as described by Berghofer and

Nipkow 2004

• A dsize parameter is used to control the size (depth of

recursion) of the datatype construction

• Thus, if dsize is 4, lists of length up to 4 will be

generated

• No problem with mixing datatypes, e.g.,

list[tree[list[real]]]

Sam Owre AFM06 presentation: 8



'

&

$

%

Using the Random Tester

• The random tester may be used from the ground

evaluator or the prover

• Ground evaluator:

(test "FORALL (n: nat): even?(n)")

• Prover:

take_drop_comm :

|-------

{1} FORALL (i, j: nat, l: list[T]):

take(j, drop(i, l)) = drop(i, take(j, l))

Rule? (random-test :instance "ex1[int]")

The formula is falsified with the substitutions:

i ==> 4

j ==> 3

l ==> (: -4, -64, 0, -57, 39 :)

Sam Owre AFM06 presentation: 9



'

&

$

%

Future Work

• User-defined random test generators

• Better handling of function types, in particular, sets:

A = B ∪ C

• More experiments to see how useful this is in practice

Sam Owre AFM06 presentation: 10


