
STRATA2003



Little Known PVS Interfaces

Sam Owre

owre@csl.sri.com

URL: http://www.csl.sri.com/˜owre/

Computer Science Laboratory

SRI International

Menlo Park, CA

September 8, 2003

Sam Owre STRATA2003: 1



PVS Design

• Software is organic

• It should be extensible through scripts and programs

• It should be embeddable within other software

• PVS has these capabilities, but they are not widely

advertised

• This talk is an attempt to partly remedy this gap

Sam Owre STRATA2003: 2



PVS History

- Started in 1990 as an attempt to fill the gap between

proof checkers and theorem provers based on EHDM

experience

- Designed to exploit the synergy between an expressive

specification language and automation through powerful

decision procedures

- Internal prototypes working in 1992

- First release at FME’93

- PVS 2 released in 1995 after significant design and code

revision

- PVS 3 released in July 2002

- Current version 3.1 released in February 2003

Sam Owre STRATA2003: 3



Significant Milestones

• 1993: BDD-based proposition simplification

• 1994: model checker

• 1996: new decision procedure prototype

• 1998: Mona, ground evaluator

• 2001: Theory interpretations, coinduction, cotuples

• 2002: ICS integration

Sam Owre STRATA2003: 4



How is PVS used?

• Directly as a proof checker by SRI, NASA, many others

• To teach courses at Stanford, many others

• As a back-end theorem prover by PAMELA,

PVS/Maple, LOOP, InVeSt, TLPVS

• As a semantic framework through shallow embeddings:

PC/DC, Ag, TAME

• Maple inteface ships formulas to PVS to be

typechecked and proved

• Zeus runs on windows connected to PVS with RPC,

originally interfaced to Z/Eves

Sam Owre STRATA2003: 5



PVS Architecture

BDD

Prover

Parser

Typechecker

ICS
Model

Checker
WS1S

Shostak DP

Tcl/Tk

LaTeX

Emacs

Lisp Image

Sam Owre STRATA2003: 6



Summary of PVS Interfaces

• The front end: User Interfaces

• The inside:

◦ strategies

◦ data structures

◦ functions

◦ embeddings

• The back end: Inference Engines, Decision procedures

Sam Owre STRATA2003: 7



The PVS Front End

• The front end consists of Emacs, Tcl/Tk, LATEX, and

Lisp functions

• In usual startup the pvs shell script runs Emacs, which

loads PVS Emacs files, and starts the Lisp process

• Many systems provide their own interface, and want to

use PVS as a black box, with or without Emacs

• Maple, Zeus run PVS without Emacs

Sam Owre STRATA2003: 8



PVS without Emacs

• Invoke using pvs -raw

• Reads Lisp forms from stdin

• Writes various forms to stdout, stderr

• Need to recognize the prompt, asynchronous output,

and result

• None of this is documented, though it is possible to

reverse-engineer from the PVS Emacs sources

Sam Owre STRATA2003: 9



Strategies

• Strategies are interpreted by the PVS prover

• They employ a Lisp-like language, but they are not Lisp

• Some strategies - particularly if and let - do lisp

evaluation for select components

• The manuals do not give adequate information about

the available lisp functions and structures

Sam Owre STRATA2003: 10



The Strategy Language

There are primitive rules, defined rules, and strategies

Examples of primitive rules:

• flatten for disjunctive simplification

• split for conjunctive splitting

• skolem for eliminating universal-strength quantifiers

• inst for instantiating existential-strength quantifiers

• auto-rewrite for installing rewrite rules for use during

simplification

• simplify for simplification using rewriting and ground

decision procedures

Sam Owre STRATA2003: 11



Defining Rules and Strategies

• defstep: creates a defined rule and a strategy

(defstep$)

• defstrat: creates a strategy only

• defhelper: like defstep, but not intended for a user

command

• These all create strategies with Lisp-like arguments

(&optional, &rest)

• Note that &optional and &rest also play the role of &key

Sam Owre STRATA2003: 12



Strategy Components

• calls to other rules and strategies

• quote identity strategy

• try for subgoaling and backtracking

• if for conditions

• let binds local variables to Lisp values

• recursion

Sam Owre STRATA2003: 13



A Simple PVS Strategy: smash

• smash is similar to grind, but less powerful

• It repeatedly tries bddsimp, assert, and lift-if

• Stops when all three strategies have no effect on

remaining subgoals

• Note that it never (directly) evaluates Lisp expressions

(defstep smash (&optional (updates? t) (let-reduce? t))

(repeat* (then (bddsimp)

(assert :let-reduce? let-reduce?)

(lift-if :updates? updates?)))

"Repeatedly tries bddsimp, assert, and lift-if. If the updates?

option is nil, update applications are not if-lifted."

"Repeatedly simplifying with BDDs, decision procedures, rewriting,

and if-lifting")

Sam Owre STRATA2003: 14



A Complex Strategy: decompose-equality

decompose-equality is used to create component equalities

from tuple, record, function, cotuple, and datatypes

{-1} r1 = (# x := 0, y := 1 #)

|-------

Rule? (decompose-equality)

Applying decompose-equality,

this simplifies to:

ff :

{-1} r1‘x = 0

{-2} r1‘y = 1

|-------

Sam Owre STRATA2003: 15



A Complex Strategy: decompose-equality

• This strategy uses let and if, so directly evaluates Lisp

expressions

• It uses let to build strategies, which are then invoked

• The global variable *ps* is bound to the current

proofstate

• An appropriate equality is found in the current-goal

sequent using select-seq and find-if

Sam Owre STRATA2003: 16



A Complex Strategy: decompose-equality

(defstep decompose-equality (&optional (fnum *) (hide? t))

(let ((sforms (select-seq (s-forms (current-goal *ps*))

(if (memq fnum ’(* + -)) fnum

(list fnum))))

(fm (find-if

#’(lambda (sf)

(or (decomposable-equality? (formula sf))

(and (negation? (formula sf))

(decomposable-equality?

(args1 (formula sf))))))

sforms))

(ffm (when fm (formula fm)))

(equality? (when fm

(or (equation? ffm)

(and (negation? ffm)

(disequation? (args1 ffm))))))

Sam Owre STRATA2003: 17



A Complex Strategy: decompose-equality

The component-equalities creates equations depending on

the common type of the lhs and rhs - record, tuple,

cotuple, function, or datatype

Note that if here is Lisp, not a strategy

(fmla (when fm (if (negation? ffm)

(args1 ffm)

ffm)))

(lhs (when fmla (args1 fmla)))

(rhs (when fmla (args2 fmla)))

(comp-equalities (when (and fmla (not equality?))

(component-equalities

lhs rhs (find-declared-adt-supertype

(type lhs)))))

(fnum-count (length (s-forms (current-goal *ps*)))))

Sam Owre STRATA2003: 18



A Complex Strategy: decompose-equality

The strategy is now built from the values of the let

variables

*new-fmla-nums* set to fnums of new and changed formulas

(if fmla

(if equality?

(apply-extensionality fnum :hide? hide)

(branch (case comp-equalities)

((then (let ((fnums *new-fmla-nums*))

(simplify fnums))

(if (null *new-fmla-nums*)

(let ((msg (format nil

"Generated equation ~

simplifies to true:~% ~a"

comp-equalities)))

(then (skip-msg msg) (fail)))

Sam Owre STRATA2003: 19



A Complex Strategy: decompose-equality

(let ((fnums (find-all-sformnums

(s-forms (current-goal *ps*))

’* #’(lambda (x) (eq x ffm))))

(fnum (if fnums (car fnums) nil)))

(if (and hide? fnum

(/= (length (s-forms

(current-goal *ps*)))

fnum-count))

(delete fnum)

(skip))))

(flatten))

(then (flatten) (replace*)

(grind :defs nil :if-match nil)))))

(skip-msg "Couldn’t find a suitable equation")))

Sam Owre STRATA2003: 20



PVS Abstract Syntax

• PVS abstract syntax is represented in CLOS

• Every class in PVS has a corresponding recognizer with

“?” suffix

• These satisfy the class hierarchy - (name-expr? x)

implies (expr? x)

• Hierarchy is used to hide “syntactic sugar”:

◦ +(x, 1) is of class application,

◦ x + 1 is of class infix-application,

◦ infix-application is a subclass of application

• Only the prettyprinter needs infix-application

methods.

Sam Owre STRATA2003: 21



Manipulating PVS Syntax

In defining strategies (among other things), it is common to

create new expressions from existing ones.

PVS provides several options for this

• Use make-instance to create instances including slots -

unreadable and error prone

• Create a string, parse and typecheck it - slow and

possibly ambiguous

• Use mk- functions - still need typechecking

• Use make- functions - does typechecking

• Use make!- functions - no typechecking, and no TCCs

Note that for typechecking, *current-context* must be set

Sam Owre STRATA2003: 22



Manipulating PVS Syntax: Examples

• (make-instance ’infix-application

’operator (make-instance ’name-expr ’id ’+)

’argument (make-instance ’arg-tuple-expr

’exprs (list (make-instance ’name-expr ’id ’x)

(make-instance ’number-expr

’number 1))))

• (pc-typecheck (pc-parse "x + 1" ’expr))

• (mk-application (mk-name-expr ’+) (mk-name-expr ’x)

(mk-number-expr 1))

• (make-application plus (mk-name-expr ’x) (mk-number-expr 1))

where plus is set to the typechecked + operator

• (make!-application plus xxx one)

where xxx and one are typechecked

Sam Owre STRATA2003: 23



Equality and Other Relations

• Syntactic equality is not often used because of

overloading and type inferencing

• The test for equality is tc-eq, which compares two

typechecked terms

◦ Deals with α-equivalence

◦ Ignores syntactic sugar (e.g., infix vs prefix)

◦ Handles overloaded names properly

• There are also useful tests for types: compatible?,

subtype-of?

Sam Owre STRATA2003: 24



Substitution Functions

There are several functions for substitution:

• copy - copies given term, with specific slot value

settings

• lcopy - makes copies only when slot values differ

• substit - substitutes expressions for free variables

• subst-mod-params - substitutes actual parameters for

free parameters; also does mappings

• gensubst - generic substitution

Sam Owre STRATA2003: 25



Other Useful Functions

• mapobject - applies a given function recursively to

abstract syntax

• simplify-expr - given a boolean expression, a theory,

and a strategy, returns subgoals left after proof attempt

• simplify-expression - given an expression (of any

type), a theory, and a strategy, returns a simplified

expression of the same type

Sam Owre STRATA2003: 26



Embeddings

AC/DC provided a an alternative grammar, modified from

the PVS input to Ergo

• parser, unparser automatically generated

• needed to map to existing PVS classes

• generally worked, though could sometimes slip into PVS

• Ergo is not easy to work with

Ag uses a shallow embedding, with modified prettyprinter to

present formulas naturally

This should be made part of the API

Sam Owre STRATA2003: 27



Adding an Inference Procedure

• PVS currently has no support for adding derived rules -

requires some form of reflection

• The addrule macro may be used to add new primitive

rules

• Must be done carefully, potentially unsound

• Currently not documented, requires understanding of

prover architecture

Sam Owre STRATA2003: 28



A Simple Inference Procedure: case

(addrule ’case nil (&rest formulas)

(case-rule-fun formulas)

"Splits according to the truth or falsity of the formulas in

FORMULAS.

(CASE a b c) on a sequent A |- B generates subgoals:

a, b, c, A |- B;

a, b, A |- c, B;

a, A |- b, B;

A |- a, B.

See also CASE-REPLACE, CASE*"

"~%Case splitting on ~@~% ~a, ~")

Sam Owre STRATA2003: 29



A Simple Inference Procedure: case-rule-fun

Rules return closures that are applied to a proofstate ps

(defun case-rule-fun (fmlas)

#’(lambda (ps)

(let* ((fmlas (if (listp fmlas) fmlas (list fmlas)))

(tc-fmlas (loop for fml in fmlas

collect

(internal-pc-typecheck

(pc-parse fml ’expr)

:expected *boolean*

:tccs ’all)))

(freevars (freevars tc-fmlas)))

Sam Owre STRATA2003: 30



A Simple Inference Procedure: case-rule-fun

The result of applying the closure is multiple values:

• A signal: ’! for proved, ’X for no change, ’? for new

subgoals

• A list of subgoal sequents

• Side effects to the proofstate

(cond ((null tc-fmlas)

(error-format-if "~%No formulas given.")

(values ’X nil nil))

((not (null freevars))

(error-format-if

"~%Irrelevant free variables ~~a, ~ occur in formulas."

freevars)

(values ’X nil nil))

Sam Owre STRATA2003: 31



A Simple Inference Procedure

make-cases generates subgoal sequents and returns

references of tc-fmlas

The references are used to update the proofstate, when

proof is completed this is used for proofchain analysis

(t

(multiple-value-bind

(subgoals dependent-decls)

(make-cases (current-goal ps) tc-fmlas nil)

(values ’? subgoals

(list ’dependent-decls dependent-decls))))))))

Sam Owre STRATA2003: 32



An Inference Engine: bddsimp

• Uses a BDD package written in C by Geertleon Janssen

• Uses similar addrule interface

• Uses foreign function interface for efficiency

• In addition, must translate between PVS and BDD

representations

Sam Owre STRATA2003: 33



Adding a Decision Procedure: Requirements

• Decision procedures are invoked by assert, a strategy

that calls the simplify primitive rule

• Decision procedures must be incremental, so they must

have a state

• And they must support backtracking to an earlier state

• They must be sound

• They must be interruptible

Sam Owre STRATA2003: 34



Adding a Decision Procedure: API

• Adding a decision procedure means integrating it with

simplify rule

• Instead of modifying the (very complex) simplify code,

hooks have been provided

• A decision procedure is integrated by defining new

methods for it

Sam Owre STRATA2003: 35



Adding a Decision Procedure: API

• The decision procedure language is usually first-order,

and is not a subset of PVS

• Translation functions must be provided from PVS to

the DP language

• If the DP is not implemented in Lisp, either

interprocess communication (slow) or foreign functions

must be used

• With foreign functions there is an issue with garbage

collection

• Even more difficult if the DP is in a language with a

garbage collector

Sam Owre STRATA2003: 36



Methods Used for Adding a Decision Procedure

• dpi-init*: initialization - invoked when PVS starts

• dpi-start*: invoked at start of proof

• dpi-empty-state*: used to create an empty state

• dpi-process*: translates PVS expression, and invokes

DP

• dpi-state-changed?*: checks if two states are the same

• There are other optional methods available.

Sam Owre STRATA2003: 37



Adding ICS

ICS implemented in OCaml, runtime object linked into Lisp

Defining methods was trivial

Defining foreign functions was straightforward

Sam Owre STRATA2003: 38



Adding ICS: Difficulties

• OCaml garbage collector caused difficulties:

◦ Externally visible pointers (data and functions) need

registration

◦ When a pointer is no longer needed, must be

deregistered

◦ Easy to forget to register something, everything

seems to work

◦ Difficult to debug

• OCaml also provided interrupt handlers that caused

difficulties

Sam Owre STRATA2003: 39



PVS: Future Plans

• Immediate:

◦ Write an API document

◦ Theory interpretation improvements

◦ Auto-forward-chaining, possibly integrated with

auto-rewrite

◦ XML, HTML generation

◦ Improve regression test functions and add more

tests

• Long Term:

◦ Polymorphism

◦ Add Functor sublanguage, coalgebras

◦ Reflection: PVS in PVS

Sam Owre STRATA2003: 40



Conclusions

• Adapting existing software can be more complex than

building it anew

• Though PVS was intended for embedded use, the

appropriate interfaces were not adequately documented

• We are preparing a document spelling out the interfaces

that are needed to integrate PVS with other software

• We are also going to contribute much of the API code

to the QPQ repository (qpq.org)

Sam Owre STRATA2003: 41

qpq.org

