
A Tutorial Introduction to PVS

Presented at WIFT ’95: Workshop on Industrial-Strength Formal
Specification Techniques, Boca Raton, Florida, April 1995

Judy Crow, Sam Owre, John Rushby, Natarajan Shankar, Mandayam Srivas∗

Computer Science Laboratory
SRI International

Menlo Park CA 94025 USA

http://www.csl.sri.com/sri-csl-fm.html

Updated December 2014

Abstract

This document provides an introductory example, a tutorial, and a compact refer-
ence to the PVS verification system. It is intended to provide enough information to
get you started using PVS, and to help you appreciate the capabilities of the system
and the purposes for which it is suitable.

∗Dave Stringer-Calvert provided valuable comments on earlier versions of this tutorial, and also checked
the specifications and proofs appearing here. Preparation of this tutorial was partially funded by NASA
Langley Research Center under Contract NAS1-18969, and by the Advanced Research Projects Agency
through NASA Ames Research Center NASA-NAG-2-891 (Arpa order A721) to Stanford Unversity.

Contents

Overview 1

I Introduction to Mechanized Analysis of Specifications Using PVS 3

1 Introduction 4

2 An Electronic Phone Book: Simple Version 4

3 A Better Version of the Specification Using Sets 15

4 Version of the Specification That Maintains An Invariant 19

5 Summary 24

II Tutorial on Using PVS 25

1 Introducing PVS 26
1.1 Design Goals for PVS . 27
1.2 Uses of PVS . 28
1.3 Getting and Using PVS . 28

2 A Brief Tour of PVS 29
2.1 Creating the Specification . 30
2.2 Parsing . 31
2.3 Typechecking . 31
2.4 Proving . 32
2.5 Status . 33
2.6 Generating LATEX . 34

3 The PVS Language 35
3.1 A Simple Example: The Rational Numbers 35
3.2 A More Sophisticated Example: Stacks . 38
3.3 Implementing Stacks . 40
3.4 Using Theories: Partial and Total Orders 42
3.5 Using Theories: Sort . 43
3.6 Sets in Higher-order Logic . 48
3.7 Recursion . 49
3.8 Dependent Typing . 49
3.9 Abstract Datatypes: Stacks . 50
3.10 Abstract Datatypes: Terms . 53

4 The PVS Proof Checker 53
4.1 Introduction . 54
4.2 Preliminaries . 56
4.3 Using the Proof Checker . 57

i

Contents

Propositional Proof Commands . 57
Quantifier Proof Commands . 61
Decision Procedures . 63
Using Definitions and Lemmas . 67
Proof Checker Pragmatics . 69

5 Two Hardware Examples 70
5.1 A Pipelined Microprocessor . 70

Informal Description . 71
Formal Specification . 72
Proof of Correctness . 74

5.2 An N-bit Ripple-Carry Adder . 78
Typechecking . 78
Proof of Adder correct n . 79

6 Exercises 81

III PVS Reference 82

1 PVS Files 83

2 PVS Language Summary 84

3 PVS Emacs Commands 94

4 PVS Prover Commands 100

References 107

ii

Overview

Overview

PVS is a verification system: an interactive environment for writing formal specifications
and checking formal proofs. It builds on nearly 20 years experience at SRI in building
verification systems, and on substantial experience with other systems. The distinguishing
feature of PVS is its synergistic integration of an expressive specification language and
powerful theorem-proving capabilities. PVS has been applied successfully to large and
difficult applications in both academic and industrial settings.

PVS provides an expressive specification language that augments classical higher-order
logic with a sophisticated type system containing predicate subtypes and dependent types,
and with parameterized theories and a mechanism for defining abstract datatypes such as
lists and trees. The standard PVS types include numbers (reals, rationals, integers, naturals,
and the ordinals to ε0), records, tuples, arrays, functions, sets, sequences, lists, and trees, etc.
The combination of features in the PVS type-system is very convenient for specification, but
it makes typechecking undecidable. The PVS typechecker copes with this undecidability by
generating proof obligations for the PVS theorem prover. Most such proof obligations can
be discharged automatically. This liberation from purely algorithmic typechecking allows
PVS to provide relatively simple solutions to issues that are considered difficult in some
other systems (for example, accommodating partial functions such as division within a logic
of total functions), and it allows PVS to enforce very strong checks on consistency and other
properties (such as preservation of invariants) in an entirely uniform manner.

PVS has a powerful interactive theorem prover/proof checker. The basic deductive steps
in PVS are large compared with many other systems: there are atomic commands for induc-
tion, quantifier reasoning, automatic conditional rewriting, simplification using arithmetic
and equality decision procedures and type information, and propositional simplification
using binary decision diagrams. The PVS proof checker manages the proof construction
process by prompting the user for a suitable command for a given subgoal. The execution
of the given command can either generate further subgoals or complete a subgoal and move
the control over to the next subgoal in a proof. User-defined proof strategies can be used
to enhance the automation in the proof checker. Model-checking capabilities used for auto-
matically verifying temporal properties of finite-state systems have recently been integrated
into PVS. PVS’s automation suffices to prove many straightforward results automatically;
for hard proofs, the automation takes care of the details and frees the user to concentrate
on directing the key steps.

PVS is implemented in Common Lisp—with ancillary functions provided in C, Tcl/TK,
and LATEX—and uses GNU Emacs for its interface. Configured for Sun Sparc Workstations
running under SunOS 4.1.3, the system is freely available under license from SRI.

PVS has been used at SRI to undertake proofs of difficult fault-tolerant algo-
rithms [LR93a,LR93b,LR94], to verify the microcode for selected instructions of a complex,
pipelined, commercial microprocessor having 500,000 transistors where seeded and unseeded
errors were found [MS95], to provide an embedding for the Duration Calculus (an interval
temporal logic [SS94]), and for several other applications. PVS is installed at many sites
worldwide, and is in serious use at about a dozen of them. There is a growing list of sig-
nificant applications undertaken using PVS by people outside SRI. Many of these can be
examined at the WWW site http://www.csl.sri.com/sri-csl-fm.html.

1

Overview

This tutorial is intended to give you an idea of the flavor of PVS, of the opportunities
created by effective mechanization of formal methods, and an introduction to the use of the
system itself. PVS is a big and complex system, so we can really only scratch the surface
here. To make advanced use of the system, you should study the manuals (there are three
volumes: language [OSRSC99a], prover [SORSC99], and system [OSRSC99b]), and some of
the more substantial applications.

There are three parts to this tutorial.

• An Introduction to the Mechanized Analysis of Requirements Specifications Using
PVS. This tutorial introduction shows how PVS can be used to actively explore and
analyze a simple requirements specification. It is intended to demonstrate the utility
of mechanized support for formal methods, and the opportunities for validation and
exploration that are created by effective mechanization.

• Tutorial on Using PVS. This introduces many of the capabilities of PVS by means of
simple examples and takes you through the process of using the system. While it can
be read as an overview, it is best to have PVS available and to actively follow along.

• PVS Reference. This presents all PVS system and prover commands, and illustrates
the language constructs in a very compact form.

A useful supplement to the material presented here is [ORSvH95], which describes some
of the larger verifications undertaken using PVS and also motivates and describes some of
the design decisions underlying PVS.

2

Part I

An Introduction to the Mechanized
Analysis of Requirements Specifications
Using PVS

3

Analyzing Specifications Using PVS

1 Introduction

Simply using a formal notation does not ensure that specifications will be correct: writing a
correct formal specification is no easier than writing a correct program or a correct descrip-
tion in English. Specifications—especially requirements specifications, where there is no
higher-level specification against which they can be verified—need to be validated against
informal expectations. This is generally done by human review and inspection (which can
be very formalized processes), but with formal specifications it is possible to do more.

The distinctive feature of formal specifications is that they support formal deduction:
it is possible to reduce certain questions about a formal specification to a process that
resembles calculation and that can be checked by others or by machine. Thus, reviews and
inspections can be supplemented by analyses of formal specifications, and those analyses
can be mechanically checked.

In order to conduct mechanized analysis, it is necessary to support a specification lan-
guage with powerful tools including, primarily, a theorem prover. The needs of efficient
theorem proving drive specification language design in slightly different directions than for
unmechanized notations such as Z, but the presence of mechanization also creates new
linguistic opportunities—such as allowing typechecking to use theorem proving—that can
enhance the clarity and precision of specifications.

PVS is a verification system: a specification language tightly integrated with a powerful
theorem prover and other tools. This document is intended to serve as a first introduction
to PVS: it is not intended to teach the details of the PVS language and theorem prover,
but rather to give an appreciation of the opportunities created by mechanized analysis in
general, and of some of the capabilities of PVS in particular.

2 An Electronic Phone Book: Simple Version

Suppose we are to formally specify the requirements for an electronic phone book, given
the following informal description.1

• A phone book shall store the phone numbers of a city

• It shall be possible to retrieve a phone number given a name

• It shall be possible to add and delete entries from a phone book

Examining this description, we see that there are three types of entities mentioned:
phone books, phone numbers and names; a phone book provides an association between
names and phone numbers. We need three operations, which we can call FindPhone,
AddPhone, and DelPhone. FindPhone should take a phone book and a name and return
the phone number associated with that name. The exact functionality of the other two
operations is less clear, so we have to make some design decisions. We decide that AddPhone
should take a phone book, a name, and a phone number and should add the association
between the name and number to the phone book; and that DelPhone should take a phone
book and a name and delete the phone number associated with that name (if any).

1This example is based on one by Ricky Butler and Sally Johnson of NASA Langley [BJ93].

4

Phone Book: Simple Version Analyzing Specifications Using PVS

The next step is to decide how to represent these entities and operations in PVS. If
we were programming, we would have to choose some specific representations for phone
numbers and names—e.g., ascii strings, or more structured representations such as records
containing the area-code and number—and would have to make several design decisions at
this point. But for requirements specification, all we require is that phone numbers and
names are distinguishable types of entities. In PVS, we can specify this as follows (a % sign
introduces a comment that extends to the end of the line).

N: TYPE % names

P: TYPE % phone numbers

These types are uninterpreted , meaning that we know nothing about their members—not
even whether they are zero, many, or infinite in number—except that elements of type N

are distinguishable from those of type P, and that there is an equality predicate on each
type (i.e., given two Ps, it is possible to tell whether they are the same or not).

Next, we need to describe how phone books—associations between names and numbers—
are to be represented. There are several possibilities: one is to record each association as
a (name, phone number) pair, so that a phone book is a set of such pairs; another is as
a function from names to phone numbers (you can think of a function as an array if that
notion is more familiar to you). PVS is able to reason very effectively with functions, so
there is some advantage to the latter representation. We can specify this as follows.

B: TYPE = [N -> P] % phone books

This says that phone books have the type B, and are functions from names to phone numbers.
We must recognize that not all names will be in every phone book—a phone book only

records those names that have a phone number—so we need some way to distinguish those
names that have a phone number from those that do not. In the specification language Z, for
example, this would be accomplished by specifying that phone books are partial functions.
Efficient theorem proving, however, strongly encourages use of total functions, so PVS is
a logic of total functions.2 One way to indicate that a name has no phone number is to
identify some particular phone number, represented by n0 say, to indicate this fact. Of
course we need to mentally make note that this number must be different from any “real”
phone number (we will see later how we can enforce this requirement, and later still we
will see a better way to deal with this whole issue of names that have no phone number).
Given this decision, we can next specify the empty phone book as the (unique) phone book
that maps all names to n0. I will specify this axiomatically, later we will see how to do it
definitionally.

n0: P

emptybook: B

emptyax: AXIOM FORALL (nm: N): emptybook(nm) = n0

If we were programming an implementation, a literal translation of this representation would
be grossly inefficient: it requires “space” for every possible name and it explicitly records

2PVS can represent partial functions very nicely using dependent types, but that is an advanced topic.

5

Phone Book: Simple Version Analyzing Specifications Using PVS

for every name that there is no number associated with the name. When programming, we
would seek more compact representations that traded off space for efficient access—perhaps
a hash table or balanced binary tree. In requirements specification, however, the idea is
simply to record the functionality required, and it is not our concern to suggest an efficient
implementation.

We can specify the FindPhone operation as a function that takes a phone book and a
name and returns the phone number associated with that name.

FindPhone: [B, N -> P]

Findax: AXIOM FORALL (bk: B), (nm: N): FindPhone(bk, nm) = bk(nm)

Notice that this is a functional specification style: the “state” of the system we are interested
in (i.e., the phone book) is passed to the FindPhone function as an argument; this is in
contrast to a more procedural style of specification (as in Z, for example), where there
is a built-in notion of state. Functional specifications use conventional logic and can be
mechanized straightforwardly, whereas procedural specifications involve some kind of Hoare
logic—for which it is rather more difficult to provide mechanized deduction.

The distinction between functional and procedural kinds of specification is revealed
more clearly in the case of our next operation, AddPhone. In a procedural specification,
this operation would update the state of the phone book “in place.” In the functional style
used here, we model the operation by a function that takes a phone book, a name, and a
number, and gives us back a “new” phone book in which the association between the name
and number has been added.

AddPhone: [B, N, P -> B]

Addax: AXIOM FORALL (bk: B), (nm: N), (pn: P):

AddPhone(bk, nm, pn) = bk WITH [(nm) := pn]

The WITH construct is similar to function overriding in Z.
Now that we have specified two operations, perhaps we should check our understanding

of them. If we were programming, we might run a couple of test cases. Some people advocate
something similar (often called “animation”) for specifications. This is generally feasible
only with specifications that have a constructive character (i.e., that are essentially very
high-level programs). Not all specifications are best presented in this way, however, so the
desire to make specifications executable can distort their other characteristics. Another way
to probe a specification is by means of “formal challenges.” These are putative theorems:
general statements that we think should to be true if our specification says what it ought
to. This can yield more information than an individual test case (it is generally equivalent
to running a whole class of test cases), and uses theorem proving (i.e., search), rather than
direct execution, so it is possible even when the specification is not constructive. (If the
specification is constructive—as in this example—then theorem proving generally comes
down to symbolic execution and is very efficient.) A suitable challenge for the specification
we have so far is: “if I add a name nm with phone number pn to a phone book and look up
the name nm, I should get back the phone number pn.” We can write this as follows.

FindAdd: CONJECTURE FORALL (bk: B), (nm: N), (pn: P):

FindPhone(AddPhone(bk, nm, pn), nm) = pn

6

Phone Book: Simple Version Analyzing Specifications Using PVS

In order to test this conjecture, we have to extend the specification into a complete
PVS “theory” (as modules are called in PVS). This is shown in Figure 1. Then we load
the specification into PVS, parse and typecheck it, and start the prover. The mechanics of
doing this are described in other PVS tutorial documents. Briefly, PVS uses an extended
GNU Emacs as its interface, and PVS system functions are invoked by Emacs keystrokes.
To invoke the prover, for example, place the cursor on the CONJECTURE and type M-x prove

(this will automatically parse and typecheck if necessary).

phone_1: THEORY

BEGIN

N: TYPE % names

P: TYPE % phone numbers

B: TYPE = [N -> P] % phone books

n0: P

emptybook: B

emptyax: AXIOM FORALL (nm: N): emptybook(nm) = n0

FindPhone: [B, N -> P]

Findax: AXIOM FORALL (bk: B), (nm: N): FindPhone(bk, nm) = bk(nm)

AddPhone: [B, N, P -> B]

Addax: AXIOM FORALL (bk: B), (nm: N), (pn: P):

AddPhone(bk, nm, pn) = bk WITH [(nm) := pn]

FindAdd: CONJECTURE FORALL (bk: B), (nm: N), (pn: P):

FindPhone(AddPhone(bk, nm, pn), nm) = pn

END phone_1

Figure 1: Specification Ready for Checking the First Challenge

Starting the prover on the FindAdd conjecture produces the following display.

FindAdd :

|-------

{1} FORALL (bk: B), (nm: N), (pn: P):

FindPhone(AddPhone(bk, nm, pn), nm) = pn

Rule?

This is a sequent : in general there will be several numbered formulas above the turnstile
symbol |-------, and several below. The idea is that we have to establish that the conjunc-
tion (and) of the formulas above the turnstile implies the disjunction (or) of the formulas
below the line. The Rule? prompt indicates that PVS is waiting for us to type a prover
command. These use lisp syntax, with pieces of PVS syntax embedded in quotes: for
example: (grind :theories ("phone 1")).

This introduction is intended to describe the purpose and value of mechanized theorem
proving in analysis of requirements specification; it is not intended as a tutorial on the

7

Phone Book: Simple Version Analyzing Specifications Using PVS

PVS prover, so I will not explain all the various choices and considerations at each step.
The prover provides a number (about 20) basic commands, and a similar-sized collection of
higher-level commands called “strategies” that are programmed using the basic commands.
You type a command at the Ready? prompt, and the prover applies the command and
presents you with the transformed sequent and another prompt. When the prover recognizes
that a sequent is trivially true, it terminates that branch of the proof. Some commands may
split the proof into branches, in which case you will be presented with one of the branches,
and the others will be remembered and popped up when the current branch terminates.
When all branches are terminated the theorem is proved.

On straightforward theorems (and the straightforward parts of difficult theorems), it is
generally best to use the highest-level, most automated strategies, and only to resort to
the basic commands for crucial steps. The highest-level strategy is called grind. It does
skolemization, heuristic instantiation, propositional simplification (using BDDs), if-lifting,
rewriting, and applies decision procedures for linear arithmetic and equality. It takes several
optional arguments which mostly supply the names of the formulas that can be used for
automatic rewriting (i.e., replacing of an instance of the left hand side of an equation by
the corresponding instance of the right hand side). In this case, we need to tell it that all
the definitions and axioms in the theory phone 1 may be used as rewrites. The command
above does this, and is sufficient to prove the challenge.

Rule? (grind :theories ("phone_1"))

Addax rewrites AddPhone(bk, nm, pn)

to bk WITH [(nm) := pn]

Findax rewrites FindPhone(bk WITH [(nm) := pn], nm)

to pn

Trying repeated skolemization, instantiation, and if-lifting,

Q.E.D.

Encouraged by this small confirmation that we are on the right track we can return to
specifying the DelPhone operation. This is specified in a similar way to AddPhone.

DelPhone: [B, N -> B]

Delax: AXIOM FORALL (bk: B), (nm: N): DelPhone(bk, nm) = bk WITH [(nm) := n0]

We can similarly test our understanding of this specification by checking the intuition
that adding a name and phone number to a book and then deleting them leaves the book
unchanged.

DelAdd: CONJECTURE FORALL (bk: B), (nm: N), (pn: P):

DelPhone(AddPhone(bk, nm, pn), nm) = bk

The same proof strategy as before fails to prove the conjecture and produces the following
result.

8

Phone Book: Simple Version Analyzing Specifications Using PVS

DelAdd :

|-------

{1} FORALL (bk: B), (nm: N), (pn: P): DelPhone(AddPhone(bk, nm, pn), nm) = bk

Rule? (grind :theories ("phone_1"))

Addax rewrites AddPhone(bk, nm, pn)

to bk WITH [(nm) := pn]

Delax rewrites DelPhone(bk WITH [(nm) := pn], nm)

to bk WITH [(nm) := pn] WITH [(nm) := n0]

Trying repeated skolemization, instantiation, and if-lifting, this simplifies to:

DelAdd :

|-------

{1} bk!1 WITH [(nm!1) := pn!1] WITH [(nm!1) := n0] = bk!1

Rule?

The identifiers with ! in them are Skolem constants—arbitrary representatives for quanti-
fied variables. This sequent is requiring us to prove that two functions (i.e., phone books)
are the same: one that has been modified by adding a name and then removing it, another
that is unchanged. To prove that two functions are the same, we appeal to the principle of
extensionality , which says that this is so if the values of the two functions are identical for
every point in their domains.

Rule? (apply-extensionality)

Applying extensionality, this simplifies to:

DelAdd :

|-------

{1} bk!1 WITH [(nm!1) := pn!1] WITH [(nm!1) := n0](x!1) = bk!1(x!1)

[2] bk!1 WITH [(nm!1) := pn!1] WITH [(nm!1) := n0] = bk!1

Rule? (delete 2)

Deleting some formulas, this simplifies to:

DelAdd :

|-------

[1] bk!1 WITH [(nm!1) := pn!1] WITH [(nm!1) := n0](x!1) = bk!1(x!1)

Rule?

It is always possible to delete formulas from a sequent; here I have deleted the original
formula to reduce clutter, since it is the extensional form that is interesting. This se-
quent is asking us to show that the phone number associated with an arbitrary name x!1

is the same both before and after the phone book has been updated for name nm!1. A
case-analysis is appropriate here, according to whether or not x!1 = nm!1. This can be
accomplished by the (lift-if) command, which converts WITH expressions to their corre-
sponding IF-THEN-ELSE form. The (ground) command (a slightly less muscular command
than (grind)) then takes care of the various cases, except for one.

9

Phone Book: Simple Version Analyzing Specifications Using PVS

DelAdd :

|-------

[1] bk!1 WITH [(nm!1) := pn!1] WITH [(nm!1) := n0](x!1) = bk!1(x!1)

Rule? (lift-if)

Lifting IF-conditions to the top level,

this simplifies to:

DelAdd :

|-------

{1} IF nm!1 = x!1 THEN n0 = bk!1(x!1)

ELSE IF nm!1 = x!1 THEN n0 = bk!1(x!1)

ELSE bk!1(x!1) = bk!1(x!1)

ENDIF

ENDIF

Rule? (ground)

Applying propositional simplification and decision procedures,

this simplifies to:

DelAdd :

{-1} nm!1 = x!1

|-------

{1} n0 = bk!1(x!1)

Rule?

(A (grind) command would have performed both these steps.) For this sequent to be true,
we need to to demonstrate that if x!1 = nm!1, then the phone number originally associated
with x!1 is the special number n0. But, by virtue of the equality, this is the same as asking
us to prove that the phone number originally associated with nm!1 is n0—and there is
no reason why this should be true! Suddenly, we understand the problem: if the number
associated with nm!1 beforehand was a real phone number, nm!2, say, then the AddPhone

operation changes the association to the new number, and the DelPhone operation changes
it again to n0—which is not equal to nm!2. Thus our conjecture is only true under the
assumption that the name we add to the phone book currently has no number associated
with it. We can test this by modifying the conjecture as follows.

DelAdd2: CONJECTURE FORALL (bk: B), (nm: N), (pn: P):

FindPhone(bk, nm) = n0 => DelPhone(AddPhone(bk, nm, pn), nm) = bk

And the (grind :theories ("phone 1")) strategy proves this.
Another conjecture is that the result of adding a name and then deleting it is the same

as just deleting it.

DelAdd3: CONJECTURE FORALL (bk: B), (nm: N), (pn: P):

DelPhone(AddPhone(bk, nm, pn), nm) = DelPhone(bk, nm)

The (grind :theories ("phone 1")) strategy proves this conjecture also.

10

Phone Book: Simple Version Analyzing Specifications Using PVS

Notice how our inability to prove the original DelAdd conjecture exposed a deficiency
in our specification and led us to discover the source of the deficiency. Individual test cases
might have missed the particular circumstance that exposes the problem, but the strict
requirements of mechanically checked proof systematically led us to examine all the cases
until we discovered the one that manifested the problem.

Another conjecture we might try to prove is that after adding a name and phone number
to the phone book, the number stored for that name is a “real” number (i.e., not n0).

KnownAdd: CONJECTURE FORALL (bk: B), (nm: N), (pn: P):

FindPhone(AddPhone(bk, nm, pn), nm) /= n0

The same kind of exploration with the prover will rapidly show that this is unprovable
because there is nothing that requires the pn argument to AddPhone to be a “real” phone
number.

Our exploration of this specification has revealed a couple of deficiencies.

1. AddPhone has the side effect of changing the phone number when applied to someone
who already has a number.

2. Our specification does not rule out the possibility of giving someone n0 as a phone
number

We can deal with the second deficiency by introducing a type GP of “good phone num-
bers” as a subtype of P, with the constraint that n0 is not a member of GP. In PVS, this is
done by means of a predicate subtype, which can be written as follows.

GP: TYPE = { pn: P | pn /= n0 }

We will see later that predicate subtypes are a very powerful element of the PVS specification
language. Here we can make simple use of them by changing the signature of the AddPhone

function from [B, N, P -> B] to [B, N, GP -> B], and this will automatically prevent
the addition of n0 to a phone book as a real number.

We can deal with the first deficiency noted above by dividing the functionality of
AddPhone in two: the revised AddPhone will make no change to the phone book if the name
concerned already has a phone number, and the new ChangePhone operator will change an
existing number, but will not add a number to a name that currently lacks one.

In order to specify these functions, it is convenient to add a predicate Known? that takes
a phone book and a name and returns true if that name has a “real” phone number in the
book concerned. (A predicate is just a function whose range type is boolean.) This can be
specified as follows.

Known?: [B, N -> bool]

Known_ax: AXIOM FORALL (bk: B), (nm: N): Known?(bk, nm) = (bk(nm) /= n0)

This axiomatic style of specification has the disadvantage that axioms can introduce
inconsistencies. An individual axiom is seldom dangerous: rather, danger lies in the inter-
actions among several axioms. For example, with the original signature and definition of
AddPhone, adding the following axiom to that above yields an inconsistent specification.

11

Phone Book: Simple Version Analyzing Specifications Using PVS

Whoops: AXIOM FORALL (bk: B), (nm: N), (pn, P): Known?(AddPhone(bk, nm, pn), nm)

Inconsistent specifications are dangerous because they can be used to prove anything
at all,3 and because they cannot be implemented. It is disturbingly easy to introduce
inconsistent axioms, so it is generally best to use them sparingly. Axioms are really needed
only when it is necessary to constrain (rather than fully define) the values of a function,
or when it is necessary to constrain the interactions of several functions. When the intent
is to fully define the values of a function, it is generally better to state it as a definition,
since PVS will then check that it is indeed a “conservative extension” (and therefore does
not introduce an inconsistency).

The predicate Known? can be introduced by means of a definition by replacing the two
lines used earlier (the specification of its signature and axiom) by the following single line.

Known?: [B, N -> bool] = LAMBDA (bk: B), (nm: N): bk(nm) /= n0

The use of LAMBDA notation can be a little daunting, so PVS allows an alternative, “ap-
plicative,” form of definition as follows.

Known?(bk: B, nm: N): bool = bk(nm) /= n0

The need to specify the types of the variables in this declaration can be eliminated by
declaring them separately.

bk: VAR B

nm: VAR N

Known?(bk, nm): bool = bk(nm) /= n0

In this way, the previous axiomatic specification for AddPhone can be changed to the fol-
lowing definition, which incorporates the refinement that the function does not change the
phone book if the name already has a number known for it.

gp: VAR GP

AddPhone(bk, nm, gp): B =

IF Known?(bk, nm) THEN bk ELSE bk WITH [(nm) := gp] ENDIF

We can check that these changes provide some of the properties we expect by considering
the following formal challenge.

KnownAdd: CONJECTURE FORALL bk, nm, gp: Known?(AddPhone(bk, nm, gp), nm)

This says that a name is definitely known (i.e., has a “real” phone number) after applying
AddPhone to it. Notice that since the variables bk, nm, and gp have already been declared,
there is no need to specify their types in the FORALL construction. In fact, there is no need
to provide the FORALL construction at all: the following specification is equivalent to the
one above, since PVS automatically interprets “free” variables as universally quantified at
the outermost level.

3For example, when used in conjunction with the AXIOMs emptyax, Known ax, and Addax, Whoops allows
us to prove true = false.

12

Phone Book: Simple Version Analyzing Specifications Using PVS

KnownAdd: CONJECTURE Known?(AddPhone(bk, nm, gp), nm)

This conjecture is easily proved by the grind strategy.
Proceeding in this way, we can construct the theory phone 2 shown in Figure 2. All the

conjectures in that theory are proved by the simple command (grind). There is no need to
specify auto-rewriting of the phone 2 theory, since definitions are automatically available
for rewriting (another advantage that they have over axioms).

If we try to add the dangerous AXIOM Whoops to this new specification, PVS will note
that the third argument supplied to Addphone (pn) is a P, whereas the signature of AddPhone
says it requires a GP in this position. PVS allows a value of a supertype to be used where
one of a subtype is required, provided the value can be proven, in its context, to satisfy
the predicate of the subtype concerned. The corresponding proof obligation is generated
automatically by PVS as a Type-Correctness Condition (TCC). PVS does not consider a
specification fully typechecked until all its TCCs have been proved (though you can postpone
doing the proof until convenient). TCCs are displayed by the command M-x show-tccs; in
the present case, the TCC generated by Whoops is the following.

% Subtype TCC generated (line 37) for pn

% untried

whoops_TCC1: OBLIGATION (FORALL (pn: P): pn /= n0);

This is obviously unproveable (and untrue!), and the folly of adding the axiom Whoops is
thereby brought to our attention.

Notice that if the pn in Whoops is changed to gp, then the formula not only becomes
harmless (and no TCC is generated), but a proveable consequence of the definitions.

13

Phone Book: Simple Version Analyzing Specifications Using PVS

phone_2: THEORY

BEGIN

N: TYPE \% names

P: TYPE \% phone numbers

B: TYPE = [N -> P] \% phone books

n0: P

GP: TYPE = {pn: P | pn /= n0}

nm: VAR N

pn: VAR P

bk: VAR B

gp, gp1, gp2: VAR GP

emptybook(nm): P = n0

FindPhone(bk, nm): P = bk(nm)

Known?(bk, nm): bool = bk(nm) /= n0

AddPhone(bk, nm, gp): B =

IF Known?(bk, nm) THEN bk ELSE bk WITH [(nm) := gp] ENDIF

ChangePhone(bk, nm, gp): B =

IF Known?(bk, nm) THEN bk WITH [(nm) := gp] ELSE bk ENDIF

DelPhone(bk, nm): B = bk WITH [(nm) := n0]

FindAdd: CONJECTURE

NOT Known?(bk, nm) => FindPhone(AddPhone(bk, nm, gp), nm) = gp

FindChange: CONJECTURE

Known?(bk, nm) => FindPhone(ChangePhone(bk, nm, gp), nm) = gp

DelAdd: CONJECTURE

DelPhone(AddPhone(bk, nm, gp), nm) = DelPhone (bk, nm)

KnownAdd: CONJECTURE Known?(AddPhone(bk, nm, gp), nm)

AddChange: CONJECTURE

ChangePhone(AddPhone(bk, nm, gp1), nm, gp2) =

AddPhone(ChangePhone(bk, nm, gp2), nm, gp2)

END phone_2

Figure 2: Revised Specification

14

Phone Book: Better Version Analyzing Specifications Using PVS

3 A Better Version of the Specification Using Sets

The realization that AddPhone had the effect of changing the phone number associated with
a name if that name already had a phone number led us to revise the specification so that
AddPhone has no effect when the name already has a phone number. This treatment assumes
that names can have at most one phone number associated with them. On reflection, or
after consultation with the customer, we may decide that it is better to allow names to
have multiple numbers associated with them. We can accommodate this by changing the
range of the phone book function from a single phone number to a set of phone numbers
as follows.

B: TYPE = [N -> setof[P]] \% phone books

This approach has the benefit that we now have a “natural” representation for names that
do not have phone numbers: they can be associated with the emptyset of phone numbers.

A specification based on this approach is shown in Figure 3. The set-constructing
functions such as add, remove, emptyset, etc., and the predicates on sets such as disjoint?
are defined in a PVS prelude (i.e., built-in) theory called set. You can inspect this theory
with the command M-x view-prelude-theory. A rather more attractive rendition of this

phone_3 : THEORY

BEGIN

N: TYPE % names

P: TYPE % phone numbers

B: TYPE = [N -> setof[P]] % phone books

nm, x: VAR N

pn: VAR P

bk: VAR B

emptybook(nm): setof[P] = emptyset[P]

FindPhone(bk, nm): setof[P] = bk(nm)

AddPhone(bk, nm, pn): B = bk WITH [(nm) := add(pn, bk(nm))]

DelPhone(bk,nm): B = bk WITH [(nm) := emptyset[P]]

DelPhoneNum(bk,nm,pn): B = bk WITH [(nm) := remove(pn, bk(nm))]

FindAdd: CONJECTURE member(pn, FindPhone(AddPhone(bk, nm, pn), nm))

DelAdd: CONJECTURE DelPhoneNum(AddPhone(bk, nm, pn), nm, pn) =

DelPhoneNum(bk, nm, pn)

END phone_3

Figure 3: Specification Using Set Constructions

15

Phone Book: Better Version Analyzing Specifications Using PVS

specification is shown in Figure 4; this is produced by the command M-x latex-theory,
which typesets the specification using LATEX.

The first conjecture in this specification is easily proved using (grind). The second one
requires the more complex proof shown below.

("" (GRIND)

(APPLY-EXTENSIONALITY)

(DELETE 2)

(LIFT-IF)

(GROUND)

(APPLY-EXTENSIONALITY)

(DELETE 2)

(GRIND))

This is the form in which PVS proofs are stored for later replay.
We have specified single additions to the phone book, but it seems likely that bulk

additions will also be necessary. This will give us an opportunity to explore some more
advanced features of the PVS language and prover. We would like to specify a function
AddList, say, that takes a phone book and some collection of names and phone numbers
and adds all of those names and phone numbers to the phone book. Each name-and-number
is a pair, which can be represented in PVS by the tuple-type [N, P]. We could represent
a collection of such pairs by either a sequence, or a list—a list is most convenient here,
and is represented in PVS by the type list[[N, P]]. In this expression, the outermost
brackets enclose the type parameter (here [N, P]) to the generic list theory (e.g., a list
of phone numbers would be list[P]). In order to process such a list, we specify AddList

as a recursive function that returns the phone book it is given if the list is empty, and
otherwise recurses by applying the tail of the list to the phone book that results from
applying AddPhone to the first name and number pair in the list.

updates: VAR list[[N, P]]

AddList(bk, updates): RECURSIVE B =

CASES updates OF

null: bk,

cons(upd, rest): AddList(AddPhone(bk, proj_1(upd), proj_2(upd)), rest)

ENDCASES

MEASURE length(updates)

In this specification, the CASES expression introduces a pattern-matching enumeration
over the constructors of an abstract data type (here, list), and the proj i functions
project out the i’th member of a tuple. The MEASURE clause indicates the argument that
decreases across recursive calls (more generally, it specifies a function of the arguments, and
an ordering relation according to which it decreases). PVS uses the MEASURE to generate a
TCC to ensure that the function is total (i.e., that the recursion always “terminates”). In
this case, the TCC is

16

Phone Book: Better Version Analyzing Specifications Using PVS

phone 3: theory
begin

N: type

P: type

B: type =
[
N → setof

[
P
]]

nm, x: var N

pn: var P

bk: var B

emptybook(nm): setof
[
P
]
= ∅

[
P
]

FindPhone(bk, nm): setof
[
P
]
= bk(nm)

AddPhone(bk, nm, pn): B = bk with
[
(nm) := (bk(nm) ∪ {pn})

]
DelPhone(bk, nm): B = bk with

[
(nm) := ∅

[
P
]]

DelPhoneNum(bk, nm, pn): B =
bk with

[
(nm) := (bk(nm) \ {pn})

]
FindAdd: conjecture (pn ∈ FindPhone(AddPhone(bk, nm, pn), nm))

DelAdd: conjecture
DelPhoneNum(AddPhone(bk, nm, pn), nm, pn) =
DelPhoneNum(bk, nm, pn)

updates: var list
[[
P
]]

AddList(bk, updates): recursive B =
cases updates of

null: bk, cons(upd, rest): AddList(AddPhone(bk, PROJ 1(upd), PROJ 2(upd)), rest)
endcases

measure length(updates)

AddList member: conjecture
(pn ∈ FindPhone(bk, nm)) ⇒
(pn ∈ FindPhone(AddList(bk, updates), nm))

FindList: conjecture
every(λ (upd:

[
P
]
): PROJ 1(upd) 6= nm)(updates) ⇒

FindPhone(AddList(bk, updates), nm) = FindPhone(bk, nm)

end phone 3

Figure 4: LATEX-Printed Version of the Specification in Figure 3

17

Phone Book: Better Version Analyzing Specifications Using PVS

% Termination TCC generated (line 48) for AddList

AddList_TCC1: OBLIGATION

(FORALL (rest: list[[N, P]], upd: [N, P], updates: list[[N, P]]):

updates = cons[[N, P]](upd, rest)

IMPLIES length[[N, P]](rest) < length[[N, P]](updates))

and it is proved automatically by PVS’s standard strategy for proving TCCs (this strategy,
called (tcc), is a variety of (grind)).

The list datatype is specified in the PVS prelude using the datatype construction
(similar to a “free type” in Z).

list [T: TYPE]: DATATYPE

BEGIN

null: null?

cons (car: T, cdr:list):cons?

END list

This specifies that list is a datatype that takes a single type parameter and has constructors
null and cons, with corresponding recognizers and predicate subtypes null? and cons?,
and accessors car and cdr. This specification expands internally into many axioms and
definitions that are guaranteed to be conservative (i.e., not to introduce inconsistencies),
and that are used very efficiently by the prover.

To validate our understanding of this function, we can try a couple of challenges. A
reasonable expectation is that if a number is a member of the set of phone numbers for a
given name, then it is still a member of that set after an arbitrary list of names and phone
numbers have been added to the phone book.

AddList_member: CONJECTURE

member(pn, FindPhone(bk, nm)) =>

member(pn, FindPhone(AddList(bk, updates), nm))

Like most conjectures involving recursively-defined functions, this one requires a proof by
induction. PVS provides some powerful strategies for inductive proofs. Here, the single
strategy (induct-and-simplify "updates" :defs t) is sufficient to prove the challenge.
The argument "updates" is the name of the variable on which to induct, and :defs t

instructs PVS that it may treat all definitions as rewrites. PVS automatically selects the
correct induction rule (here, induction on lists), based on the type of the induction variable.
The induction rule itself is defined automatically as part of the expansion of the list

datatype definition.
A rather more complicated conjecture is that the set of phone numbers associated with

a given name is unchanged when a list of names and phone numbers are added to the phone
book if the given name is not mentioned in the list. This can be specified as follows.

FindList: CONJECTURE

(every! (upd:[N, P]): proj_1(upd)/=nm) (updates) =>

FindPhone(AddList2(bk, updates), nm) = FindPhone(bk, nm)

18

Phone Book: Version with Invariant Analyzing Specifications Using PVS

In this specification, every! introduces the body of a predicate that is true of all members of
the list supplied as its argument (here, updates). It is another of the constructions defined
automatically as a result of expanding the list datatype definition. As with the previous
example, the induct-and-simplify strategy is able to prove this conjecture automatically.

4 Version of the Specification That Maintains An Invariant

A reasonable expectation is that the same phone number is never assigned simultaneously
to two different names. We can extend the specification to ensure this by adding a predicate
UnusedPhoneNum that returns true if a given number is not assigned to any name in a given
phone book, and then modifying AddPhone to check the number being added is indeed
unused.

UnusedPhoneNum(bk, pn): bool =

(FORALL nm: NOT member(pn,FindPhone(bk, nm)))

AddPhone(bk, nm, pn): B =

IF UnusedPhoneNum(bk, pn) THEN bk WITH [(nm) := add(pn, bk(nm))]

ELSE bk

ENDIF

If we’ve got this right, then it ought to be the case that the sets of phone numbers
assigned to different names are always disjoint. We could generate a few challenges to check
this, but we really want to be sure that the disjointness condition is an invariant of the
specification. Recognizing this, we could try to generate the proof obligations that ensure
this property. It is tedious and error-prone to generate proof obligations of this kind by
hand, so some systems have special provision for generating the proof obligations necessary
to guarantee invariants. PVS, however, can generate the necessary proof obligations as part
of a much more general mechanism.

We have already seen that PVS allows predicate subtypes. The first step is to define
those phone books that are “valid” as the subtype VB of phone books in which the sets of
numbers associated with different names are disjoint.

VB: TYPE = { b:B | (FORALL (x,y: N): x /= y => disjoint?(b(x), b(y))) }

Then we change the specification of FindPhone to specify that it takes a VB and returns a
VB:

bk: VAR VB

AddPhone(bk, nm, pn): VB =

IF UnusedPhoneNum(bk, pn) THEN bk WITH [(nm) := add(pn, bk(nm))]

ELSE bk

ENDIF

Now the expression bk WITH [(nm) := add(pn, bk(nm))] appearing here is a B, but not
necessarily a VB. But in order to satisfy the return type specified for AddPhone, this expres-
sion must be a VB. As already explained, PVS allows a value of a supertype to be used

19

Phone Book: Version with Invariant Analyzing Specifications Using PVS

where one of a subtype is required, provided the value can be proven, in its context, to
satisfy the predicate of the subtype concerned. The context here is UnusedPhoneNum(bk,

pn), so the proof obligation that needs to be discharged in order to ensure this specification
is well-typed is the following.

% Subtype TCC generated (at line 22, column 34) for

% bk WITH [(nm) := add(pn, bk(nm))]

% expected type VB

% proved - complete

AddPhone_TCC1: OBLIGATION

FORALL (bk: VB, nm: N, pn: P):

UnusedPhoneNum(bk, pn) IMPLIES

(FORALL (x, y: N):

x /= y =>

disjoint?[P](bk WITH [(nm) := add[P](pn, bk(nm))](x),

bk WITH [(nm) := add[P](pn, bk(nm))](y))));

This proof obligation is called a Type-Correctness Condition (TCC) and it is generated
automatically by PVS. Proving it requires the following steps.

("" (GRIND :IF-MATCH NIL)

(("1" (GRIND)) ("2" (INST -1 "x!1" "y!1")

(GRIND))

("3" (GRIND))

("4" (INST -1 "x!1" "y!1")

(GRIND))

("5" (INST -1 "x!1" "y!1")

(GRIND))))

Notice that the proof splits into several branches after the first step. PVS can generate a
graphical display of the proof tree—which can then be saved as a postscript file—using the
command M-x x-show-proof. The output for this proof is shown in Figure 5,

(grind :if-match nil)

(grind) (inst - "x!1" "y!1")

(grind)

(grind) (inst - "x!1" "y!1")

(grind)

(inst - "x!1" "y!1")

(grind)

Figure 5: Graphical Display of the Proof Tree for TCC AddPhone TCC1

The important point to note, however, is that the close integration between language
and prover in PVS allows the mechanization of very strong checks on specifications.

20

Phone Book: Version with Invariant Analyzing Specifications Using PVS

The full version of the specification of the previous section, adjusted to ensure that only
valid phone books are generated is shown in figure 6 and the TCCs generated are shown in
Figure 7.

21

Phone Book: Version with Invariant Analyzing Specifications Using PVS

phone 4: theory
begin

N: type

P: type

B: type =
[
N → setof

[
P
]]

VB: type =

{b: B |

(∀ (x, y: N):
x 6= y ⇒ disjoint?(b(x), b(y)))}

nm, x: var N

pn: var P

bk: var VB

emptybook: VB = (λ (x: N): ∅
[
P
]
)

FindPhone(bk, nm): setof
[
P
]
= bk(nm)

UnusedPhoneNum(bk, pn): bool =
(∀ nm: ¬ (pn ∈ FindPhone(bk, nm)))

AddPhone(bk, nm, pn): VB =
if UnusedPhoneNum(bk, pn)

then bk with
[
(nm) := (bk(nm) ∪ {pn})

]
else bk
endif

DelPhone(bk, nm): VB = bk with
[
(nm) := ∅

[
P
]]

DelPhoneNum(bk, nm, pn): VB =
bk with

[
(nm) := (bk(nm) \ {pn})

]
FindAdd: conjecture

UnusedPhoneNum(bk, pn) ⊃
(pn ∈ FindPhone(AddPhone(bk, nm, pn), nm))

DelAdd: conjecture
DelPhoneNum(AddPhone(bk, nm, pn), nm, pn) =
DelPhoneNum(bk, nm, pn)

end phone 4

Figure 6: Specification Enforcing the Invariant that Different Names Have Disjoint Sets of
Phone Numbers

22

Phone Book: Version with Invariant Analyzing Specifications Using PVS

% Subtype TCC generated (at line 14, column 19) for

% (LAMBDA (x: N): emptyset[P])

% expected type VB

% proved - complete

emptybook_TCC1: OBLIGATION

FORALL (x_1, y: N): x_1 /= y => disjoint?[P](emptyset[P], emptyset[P]);

% Subtype TCC generated (at line 22, column 34) for

% bk WITH [(nm) := add(pn, bk(nm))]

% expected type VB

% proved - complete

AddPhone_TCC1: OBLIGATION

FORALL (bk: VB, nm: N, pn: P):

UnusedPhoneNum(bk, pn) IMPLIES

(FORALL (x_1, y: N):

x_1 /= y =>

disjoint?[P]

((bk WITH [(nm) := add[P](pn, bk(nm))])(x_1),

(bk WITH [(nm) := add[P](pn, bk(nm))])(y)));

% Subtype TCC generated (at line 27, column 24) for

% bk WITH [(nm) := emptyset[P]]

% expected type VB

% proved - complete

DelPhone_TCC1: OBLIGATION

FORALL (bk: VB, nm: N):

FORALL (x_1, y: N):

x_1 /= y =>

disjoint?[P]

((bk WITH [(nm) := emptyset[P]])(x_1),

(bk WITH [(nm) := emptyset[P]])(y));

% Subtype TCC generated (at line 29, column 30) for

% bk WITH [(nm) := remove(pn, bk(nm))]

% expected type VB

% proved - complete

DelPhoneNum_TCC1: OBLIGATION

FORALL (bk: VB, nm: N, pn: P):

FORALL (x_1, y: N):

x_1 /= y =>

disjoint?[P]

((bk WITH [(nm) := remove[P](pn, bk(nm))])(x_1),

(bk WITH [(nm) := remove[P](pn, bk(nm))])(y));

Figure 7: TCCs for the Specification of Figure 6

23

Summary Analyzing Specifications Using PVS

5 Summary

It is no easier to write correct specifications than to write correct programs; just like pro-
grams, specifications need to be validated against their informal requirements and expecta-
tions. The mechanization provided by PVS allows the human inspections and reviews that
are an essential element of validation to be supplemented by mechanically checked analyses.

I hope the example considered here has conveyed some appreciation for the opportunities
created by mechanically supported formal specification. Other tutorials describe more of
the mechanics of using PVS, and give examples of its use to verify algorithm correctness
and to prove difficult theorems.

24

Part II

Tutorial on Using PVS

25

Introducing PVS Using PVS

1 Introducing PVS

PVS stands for “Prototype Verification System.”4 It consists of a specification language
integrated with support tools and a theorem prover. PVS tries to provide the mechanization
needed to apply formal methods both rigorously and productively.

The specification language of PVS is a higher-order logic with a rich type-system, and is
quite expressive; we have found that most of the mathematical and computational concepts
we wish to describe can be formulated very directly and naturally in PVS. Its theorem
prover, or proof checker (we use either term, though the latter is more correct), is both
interactive and highly mechanized: the user chooses each step that is to be applied and
PVS performs it, displays the result, and then waits for the next command. PVS differs
from most other interactive theorem provers in the power of its basic steps: these can invoke
decision procedures for arithmetic, automatic rewriting, induction, and other relatively large
units of deduction; it differs from other highly automated theorem provers in being directly
controlled by the user. We have been able to perform some significant new verifications
quite economically using PVS; we have also repeated some verifications first undertaken in
other systems and have usually been able to complete them in a fraction of the original
time (of course, these are previously solved problems, which makes them much easier for us
than for the original developers).

PVS is the most recent in a line of specification languages, theorem provers, and
verification systems developed at SRI, dating back over 20 years. That line includes
the Jovial Verification System [EGMS79], the Hierarchical Development Methodology
(HDM) [RL76, RLS79], STP [SSMS82], and EHDM [MSR85, RvHO91]. We call PVS a
“Prototype Verification System,” because it was built partly as a lightweight prototype to
explore “next generation” technology for EHDM, our main, heavyweight, verification system.
Another goal for PVS was that it should be freely available, require no costly licenses, and
be relatively easy to install, maintain, and use. Development of PVS was funded entirely
by SRI International

In the rest of this introduction, we briefly sketch the purposes for which PVS is intended
and the rationale behind its design, mention some of the uses that we and others are making
of it, and explain how to get a copy of the system. In Section 2, we use a simple example
to briefly introduce the major functions of PVS; Sections 3 and 4 then give more detail
on the PVS language and theorem prover, respectively, also using examples. More realistic
examples are provided in Section 5. The PVS language, system, and theorem prover each
have their own reference manuals [OSRSC99a,SORSC99,OSRSC99b], which you will need to
study in order to make productive use of the system. A pocket reference card, summarizing
all the features of the PVS language, system, and prover is also available.

The purpose of this tutorial is not to introduce the general ideas of formal methods,
nor to explain how formal specification and verification can best be applied to various
problem domains; rather, its purpose is to introduce some of the more unusual and powerful
capabilities that are provided by PVS. Consequently, this document, and the examples

4A number of people have contributed significantly to the design and implementation of PVS. They
include David Cyrluk, Friedrich von Henke, Pat Lincoln, Steven Phillips, Sreeranga Rajan, Jens Skakkebæk,
Mandayam Srivas, and Carl Witty. We also thank Mark Moriconi, Director of the SRI Computer Science
Laboratory, for his support and encouragement.

26

Introducing PVS Using PVS

we use, are somewhat technical and are most suitable for those who already have some
experience with formal methods and wish to understand how PVS provides mechanized
support for some of the more challenging aspects of formal methods.

1.1 Design Goals for PVS

PVS provides mechanized support for Formal Methods in Computer Science. “Formal
Methods” refers to the use of concepts and techniques from logic and discrete mathematics in
the development of computer systems, and we assume that you already have some familiarity
with this topic.

Formal methods can be undertaken for many different purposes, in many different ways
and styles, and with varying degrees of rigor. The earliest formal methods were concerned
with proving programs “correct”: a detailed specification was assumed to be available and
assumed to be correct, and the concern was to show that a program in some concrete
programming language satisfied the specification. If this kind of program verification is
your interest, then PVS is not for you. You will probably be better served by a verification
system built around a programming language, such as Penelope [Pra92] (for Ada), or by
some member of the Larch family [GHW85]. Similarly, if your interests are gate-level
hardware designs, you will probably do best to consider model-checking and automatic
procedures based on BDDs [BCM+90].

The design of PVS was shaped by our experience in doing or contemplating early-
lifecycle applications of formal methods. Many of the larger examples we have done concern
algorithms and architectures for fault-tolerance (see [ORSvH95] for an overview). We found
that many of the published proofs that we attempted to check were in fact, incorrect, as was
one of the important algorithms. We have also found that many of our own specifications
are subtly flawed when first written. For these reasons, PVS is designed to help in the
detection of errors as well as in the confirmation of “correctness.” One way it supports
early error detection is by having a very rich type-system and correspondingly rigorous
typechecking. A great deal of specification can be embedded in PVS types (for example,
the invariant to be maintained by a state-machine can be expressed as a type constraint),
and typechecking can generate proof obligations that amount to a very strong consistency
check on some aspects of the specification.5

Another way PVS helps eliminate certain kinds of errors is by providing very rich mech-
anisms for conservative extension—that is, definitional forms that are guaranteed to pre-
serve consistency. Axiomatic specifications can very effective for certain kinds of prob-
lem (e.g., for stating assumptions about the environment), but axioms can also introduce
inconsistencies—and our experience has been that this does happen rather more often than
one would wish. Definitional constructs avoid this problem, but a limited repertoire of such
constructs (e.g., requiring everything to be specified as a recursive function) can lead to
excessively constructive specifications: specifications that say “how” rather than “what.”
PVS provides both the freedom of axiomatic specifications, and the safety of a generous

5As a way to further strengthen error checking, we are thinking of adding dimensions and dimensional
analysis to the PVS type system and typechecker.

27

Introducing PVS Using PVS

collection of definitional and constructive forms, so that users may choose the style of spec-
ification most appropriate to their problems.6

The third way that PVS supports error detection is by providing an effective theorem
prover. Our experience has been that the act of trying to prove properties about specifi-
cations is the most effective way to truly understand their content and to identify errors.
This can come about incidentally, while attempting to prove a “real” theorem, such as that
an algorithm achieves its purpose, or it can be done deliberately through the process of
“challenging” specifications as part of a validation process. A challenge has the form “if
this specification is right, then the following ought to follow”—it is a test case posed as a
putative theorem; we “execute” the specification by proving theorems about it.7

1.2 Uses of PVS

PVS has so far been applied to several small demonstration examples, and a growing
number of significant verifications. The smaller examples include the specification and
verification of ordered binary tree insertion [OS97], a compiler for simple arithmetic ex-
pressions [Rus95], and several small hardware examples including pipeline and microcode
correctness [CRSS94]. Examples of this scale can typically be completed within a day.
More substantial examples include the correctness of a real-time railroad crossing con-
troller [Sha93], an embedding of the Duration Calculus [SS94], the correctness of some
transformations used in digital syntheses [Raj94], and the correctness of distributed agree-
ment protocols for a hybrid fault model consisting of Byzantine, symmetric, and crash
faults [LR93a, LR93b, LR94]. These harder examples can take from several days to sev-
eral weeks. Industrial applications of PVS include verification of selected elements of a
commercial avionics microprocessor whose implementation has 500,000 transistors [MS95].
Some of these applications of PVS are summarized in [ORSvH95], which also motivates and
describes some of the design decisions underlying PVS. Applications of PVS undertaken
independently of SRI include [Hoo94,But93,JMC94,MPJ94].

1.3 Getting and Using PVS

At the moment, PVS is readily available only for Sun SPARC workstations running SunOS
4.1.3, although versions of the system have been run on IBM Risc 6000 (under AIX) and
DECSystem 5000 (under Ultrix). PVS is implemented in Common Lisp (with CLOS),
and has been ported to Lucid, Allegro, AKCL, CMULISP, and Harlequin Lisps. Only the
Lucid and Allegro versions deliver acceptable performance. All versions of PVS require
Gnu Emacs, which must be obtained separately. It is not particular about the window
system, as long as it supports Gnu Emacs, although some facilities for presenting graphical
representaitons of theory dependencies and proof trees (implemented in Tcl/TK) do require

6Unlike EHDM, PVS does not provide special facilities for demonstrating the consistency of axiomatic
specifications. We do expect to provide these in a later release, but using a different approach than EHDM.

7Directly executable specification languages (e.g., [AJ90, HI88]) support validation of specifications by
running conventional test cases. We think there can be merit in this approach, but that it should not
compromise the effectiveness of the specification language as a tool for deductive analysis; we are considering
supporting an executable subset within PVS.

28

A Brief Tour of PVS Using PVS

X-Windows. In addition, LATEX and an appropriate viewer are needed to support certain
optional features of PVS.

PVS is quite large, requiring about 50 megabytes of disk space. In addition, any system
on which it is to be run should have a minimum of 100 megabytes of swap space and 48
megabytes of real memory (more is better). To obtain the PVS system, send a request to
pvs-request@csl.sri.com, and we will provide further instructions for obtaining a tape or
for getting the system by FTP. Alternatively, you may inspect the installation instructions
over WWW at URL http://www.csl.sri.com/pvs.html. All installations of PVS must
be licensed by SRI. The Lucid Lisp version requires that you have a runtime license for
Lucid Lisp. A nominal distribution fee is charged for tapes; there is no charge for obtaining
PVS by FTP.

2 A Brief Tour of PVS

In this section we introduce the system by developing a theory and doing a simple proof.
This will introduce the most useful commands and provide a glimpse into the philosophy
behind PVS. You will get the most out of this section if you are sitting in front of a
workstation (or terminal) with PVS installed. In the following we assume familiarity with
Sun Unix and Gnu Emacs.

Start by going to a UNIX shell window and creating a working directory (using mkdir).
Next, connect (cd) to that working directory and start up PVS by typing pvs.8 This
command executes a shell script which runs Gnu Emacs, loads the necessary PVS Emacs
extensions, and starts the PVS lisp image as a subprocess.9 After a few moments, you should
see the welcome screen indicating the version of PVS being run, the current directory,
and instructions for getting help. You may be asked whether you want to create a new
context in the directory; answer yes unless it is the wrong directory or you don’t have write
permission there, in which case you should answer no and provide an alternative directory
when prompted.

PVS uses Emacs as its interface by extending Emacs with PVS functions, but all the
underlying capabilities of Emacs are available. Thus the user can read mail and news, edit
nonPVS files, or execute commands in a shell buffer in the usual way.

In the following, PVS Emacs commands are given first in their long form, followed by
an alternative abbreviation and/or key binding in parentheses. For example, the command
for proving in PVS is given as M-x prove (M-x pr, C-c p). This command can be entered
by typing the Escape key, then an x10 followed by prove (or pr) and the Return key.
Alternatively, hold the Control key down while typing a c, then let go and type a p. The
Return key does not need to be pressed when giving the key binding form. In PVS all

8You may need to include a pathname, depending on where and how PVS is installed.
9All the Gnu Emacs (and X-Windows or Emacstool) command line flags can be added to the pvs command

and passed through as appropriate; the -q flag inhibits loading of the user’s .emacs initialization file, and
should be used if difficulties are encountered starting PVS or if there appear to be conflicts in keybindings.
Do not report errors to us unless they can be reproduced when the -q flag is used.

10Many keyboards provide a Meta key (hence the M- prefix), and this may be used instead. On the SUN3,
the Meta key is normally labeled Left and on the SUN4 (sparc), it is labeled ♦. The Meta key is like the
shift key; to use it simply hold the Meta key down while typing another key.

29

A Brief Tour of PVS Using PVS

commands and abbreviations are preceded by a M-x; everything else is a key-binding. In
later sections we will refer to commands by their long form name, without the M-x prefix.
Some of the commands prompt for a theory or PVS file name and specify a default; if the
default is the desired theory or file, you can simply type the Return key. Although the basic
keyword commands described here are preferred by most serious users, PVS commands are
also available as menu selections if you are running under Emacs 19.

To begin, type M-x pvs-help (C-h p) for an overview of the commands available in
PVS (type q to exit the help buffer). To exit PVS, use M-x exit-pvs (C-x C-c).

PVS specifications consist of a number of files, each of which contains one or more
theories. Theories may import other theories; imported theories must either be part of
the prelude (the standard collection of theories built-in to PVS), or the files containing
them must be in the same directory.11 Specification files in PVS all have a .pvs extension.
As specifications are developed, their proofs are kept in files of the same name with .prf

extensions. The specification and proof files in a given directory constitute a PVS context ;
PVS maintains the state of a specification between sessions by means of the .pvscontext

file. The .pvscontext and .prf files are not meant to be modified by the user. Other files
used or created by the system will be described as needed. You may move to a different
context (i.e., directory) using the M-x change-context command, which is analogous to
the UNIX cd command.

Now let’s develop a small specification:

sum: THEORY

BEGIN

n: VAR nat

sum(n): RECURSIVE nat =

(IF n = 0 THEN 0 ELSE n + sum(n - 1) ENDIF)

MEASURE (LAMBDA n: n)

closed_form: THEOREM sum(n) = (n * (n + 1))/2

END sum

This is a specification for summation of the first n natural numbers
This simple theory has no parameters and contains three declarations. The first declares

n to be a variable of type nat, the built-in type of natural numbers. The next declaration
is a recursive definition of the function sum(n), whose value is the sum of the first n natural
numbers. Associated with this definition is a measure function, following the MEASURE

keyword, which will be explained below.12 The final declaration is a formula which gives
the closed form of the sum.

2.1 Creating the Specification

The sum theory may be introduced to the system in a number of ways, all of which create
a file with a .pvs extension,13 which can be done by

1. using the M-x new-pvs-file command (M-x nf) to create a new PVS file, and typing
sum when prompted. Then type in the sum specification.

11PVS does support soft links, thus supporting a limited capability for reusing theories.
12In this case, the measure is the identity function, which could have been written simply as MEASURE n.
13The file does not have to be named sum.pvs, it simply needs the .pvs extension.

30

A Brief Tour of PVS Using PVS

2. Since the file is included on the distribution tape in the Examples/tutorial subdirec-
tory of the main PVS directory, it can be imported with the M-x import-pvs-file

command (M-x imf). Use the M-x whereis-pvs command to find the path of the
main PVS directory.

3. Finally, any external means of introducing a file with extension .pvs into the current
directory will make it available to the system; for example, using vi to type it in, or
cp to copy it from the Examples/tutorial subdirectory.

The first two alternatives display the specification in a buffer. The third option requires an
explicit request such as a built-in Gnu Emacs file command (like M-x find-file, C-x C-f),
or the M-x find-pvs-file (M-x ff or C-c C-f) command. The latter is more useful when
there are multiple specification files, as it supports completion on just the specification files,
ignoring other files that you or the system have created in the directory.

2.2 Parsing

Once the sum specification is displayed, it can be parsed with the M-x parse (M-x pa)
command, which creates the internal abstract representation for the theory described by
the specification. If the system finds an error during parsing, an error window will pop up
with an error message, and the cursor will be placed in the vicinity of the error. If you
didn’t get an error, introduce one (say by misspelling the VAR keyword), then move the
cursor somewhere else and parse the file again (note that the buffer is automatically saved).
Fix the error and parse once more. In practice, the parse command is rarely used, as the
system automatically parses the specification when it needs to.

2.3 Typechecking

The next step is to typecheck the file by typing M-x typecheck (M-x tc, C-c C-t), which
checks for semantic errors, such as undeclared names and ambiguous types. Typechecking
may build new files or internal structures such as TCCs. When sum has been typechecked,
a message is displayed in the minibuffer indicating that two TCCs were generated. These
TCCs represent proof obligations that must be discharged before the sum theory can be
considered typechecked. The proofs of the TCCs may be postponed indefinitely, though it
is a good idea to view them to see if they are provable. TCCs can be viewed using the M-x

show-tccs command, the results of which are shown in Figure 8 below.

% Subtype TCC generated (line 7) for n - 1

% unchecked

sum_TCC1: OBLIGATION (FORALL (n: nat): NOT n = 0 IMPLIES n - 1 >= 0);

% Termination TCC generated (line 7) for sum

% unchecked

sum_TCC2: OBLIGATION (FORALL (n: nat): NOT n = 0 IMPLIES n - 1 < n);

Figure 8: TCCs for Theory sum

The first TCC is due to the fact that sum takes an argument of type nat, but the
type of the argument in the recursive call to sum is integer, since nat is not closed under

31

A Brief Tour of PVS Using PVS

subtraction. Note that the TCC includes the condition NOT n = 0, which holds in the
branch of the IF-THEN-ELSE in which the expression n - 1 occurs.

The second TCC is needed to ensure that the function sum is total, i.e., terminates. PVS
does not directly support partial functions, although its powerful subtyping mechanism
allows PVS to express many operations that are traditionally regarded as partial. The
measure function is used to show that recursive definitions are total by requiring the measure
to decrease with each recursive call.

These TCCs are trivial, and in fact can be discharged automatically by using the M-x

typecheck-prove (M-x tcp) command, which attempts to prove all TCCs that have been
generated. (Try it).

2.4 Proving

We are now ready to try to prove the main theorem. Place the cursor on the line containing
the closed form theorem, and type M-x prove (M-x pr or C-c p). A new buffer will
pop up, the formula will be displayed, and the cursor will appear at the Rule? prompt,
indicating that the user can interact with the prover. The commands needed to prove this
theorem constitute only a very small subset of the commands available to the prover; more
details can be found in the prover guide [SORSC99].

First, notice the display (reproduced below), which consists of a single formula (labeled
{1}) under a dashed line. This is a sequent ; formulas above the dashed lines are called
antecedents and those below are called succedents. The interpretation of a sequent is that
the conjunction of the antecedents implies the disjunction of the succedents. Either or both
of the antecedents and succedents may be empty.14 In our case, we are trying to prove a
single succedent.

The basic objective of the proof is to generate a proof tree in which all of the leaves are
trivially true. The nodes of the proof tree are sequents, and while in the prover you will
always be looking at an unproved leaf of the tree. The current branch of a proof is the
branch leading back to the root from the current sequent. When a given branch is complete
(i.e., ends in a true leaf), the prover automatically moves on to the next unproved branch,
or, if there are no more unproven branches, notifies you that the proof is complete.

Now back to the proof. We will prove this formula by induction on n. To do this, type
(induct "n").15 This is not an Emacs command, rather it is typed directly at the prompt,
including the parentheses. This generates two subgoals; the one displayed is the base case,
where n is 0. To see the inductive step, type (postpone), which postpones the current
subgoal and moves on to the next unproved one. Type (postpone) a second time to cycle
back to the original subgoal (labeled closed form.1).16

14An empty antecedent is equivalent to true, and an empty succedent is equivalent to false, so if both
are empty the sequent is unprovable.

15PVS expressions are case-sensitive, and must be put in double quotes when they appear as arguments
in prover commands.

16Three extremely useful Emacs key sequences to know here are M-p, M-n, and M-s. M-p gets the last input
typed to the prover; further uses of M-p cycle back in the input history. M-n works in the opposite direction.
To use M-s, type the beginning of a command that was previously input, and type M-s. This will get the
previous input that matches the partial input; further uses of M-s will find earlier matches. Try these key
sequences out; they are easier to use than to explain.

32

A Brief Tour of PVS Using PVS

To prove the base case, we need to expand the definition of sum, which is done by typing
(expand "sum"). After expanding the definition of sum, we send the proof to the PVS
decision procedures, which automatically decide certain fragments of arithmetic, by typing
(assert).17 This completes the proof of this subgoal, and the system moves on to the next
subgoal, which is the inductive step.

The first thing to do here is to eliminate the FORALL quantifier. This can most easily be
done with the skolem! command18, which provides new constants for the bound variables.
To invoke this command type (skolem!) at the prompt. The resulting formula may be
simplified by typing (flatten), which will break up the succedent into a new antecedent
and succedent. The obvious thing to do now is to expand the definition of sum in the
succedent. This again is done with the expand command, but this time we want to control
where it is expanded, as expanding it in the antecedent will not help. So we type (expand

"sum" +), indicating that we want to expand sum in the succedent.19

The final step is to send the proof to the PVS decision procedures by typing (assert).
The proof is now complete, the system may ask whether to save the new proof, and whether
to display a brief printout of the proof. You should answer yes to these questions just to
see how they work. After responding to these questions, the buffer from which the prove

command was issued is redisplayed if necessary, and the cursor is placed on the formula
that was just proved. The entire proof transcript is shown below. Yours may be different,
depending on your window size and the timings involved.

inputsum-proof

Note: The proof presented here is a low-level interactive one chosen for illustrative
purposes. In practice, trivial theorems such as this are handled automatically by the higher-
level strategies of PVS. This particular theorem, for example, is proved automatically by
the single command (induct-and-simplify "n" :defs T).

2.5 Status

Now type M-x status-proof-theory (M-x spt) and you will see a buffer which displays
the formulas in sum (including the TCCs), along with an indication of their proof status.
This command is useful to see which formulas and TCCs still require proofs. Another
useful command is M-x status-proofchain (M-x spc), which analyzes a given proof to

17The assert command actually does a lot more than decide arithmetical formulas, performing three basic
tasks:

• it tries to prove the subgoal using the decision procedures.

• it stores the subgoal information in an underlying database, allowing automatic use to be made of it
later.

• it simplifies the subgoal, again utilizing the underlying decision procedures.

These arithmetic and equality procedures are the main workhorses to most PVS proofs. You should learn
to use them effectively in a proof.

18The exclamation point differentiates this command from the skolem command, where the new constants
have to be provided by the user.

19We could also have specified the exact formula number (here 1), but including formula numbers in a
proof tends to make it less robust in the face of changes. There is more discussion of this in the prover
guide [SORSC99].

33

A Brief Tour of PVS Using PVS

determine its dependencies. To use this, go to the sum.pvs buffer, place the cursor on the
closed form theorem, and enter the command. A buffer will pop up indicating whether
the proof is complete, and that it depends on the TCCs and the nat induction axiom.

2.6 Generating LATEX

In order to try out this section, you must have access to LATEX and a TEX previewer, such
as vitex or dvitool (for SUNVIEW), or xdvi (for X-windows). Otherwise this section may
be skipped.

Type M-x latex-theory-view (M-x ltv). You will be prompted for the theory name—
type sum, or just Return if sum is the default. You will then be prompted for the TEX
previewer name. Either the previewer must be in your path, or the entire pathname must
be given. This information will only be prompted for once per session, after that PVS
assumes that you want to use the same previewer.

sum: theory
begin

n: var N

sum(n): recursive N = (if n = 0 then 0 else n+ sum(n− 1) endif)
measure (λ n: n)

closed form: theorem sum(n) =
(n×(n+1))

2

end sum

Figure 9: Theory sum

After a few moments the previewer will pop up displaying the sum theory, as shown in
Figure 9. Note that LAMBDA has been translated as λ. This and other translations are built
into PVS; the user may also specify translations for keywords and identifiers (and override
those built-in) by providing a substitution file, pvs-tex.sub, which contains commands to
customize the LATEX output. For example, if the substitution file contains the three lines

THEORY key 7 {\large\bf Theory}

sum 1 2 {\sum_{i = 0}^{#1} i}

the output will look like Figure 10.

sum: Theory
begin

n: var N∑n
i=0 i: recursive N = (if n = 0 then 0 else n+

∑n−1
i=0 i endif)

measure (λ n: n)

closed form: theorem
∑n

i=0 i =
(n×(n+1))

2

end sum

Figure 10: Theory sum

34

The PVS Language Using PVS

Finally, using the M-x latex-proof command, it is possible to generate a LATEX file
from a proof. A part of an example is shown below; details are in the PVS system manual.

Rule? (expand sum +)
Expanding the definition of sum,
closed form.2:

{-1} sum(j′) = (j′×(j′+1))
2

{1} 1 + sum(j′) + j′ = 2+j′+j′×j′+2×j′
2

3 The PVS Language

The specification language of PVS is a highly expressive language based on higher-order
logic. The language was designed to describe computer systems, but concentrates on ab-
stract descriptions rather than detailed prescriptions (i.e., what rather than how). The
language supports modularity and reuse by means of parameterized theories, and has a rich
type system, including the notion of a predicate subtype. This makes typechecking unde-
cidable, but provides a great deal of flexibility. In addition, there are type constructors for
function, tuple, record, and abstract datatypes.

A theory consists of a sequence of declarations, which provide names for types, constants,
(logical) variables, axioms, and formulas. These names may be overloaded; e.g., + may be
declared to operate on a newly declared type, and still be available for integer addition.
There is a large body of theories built into PVS, collectively referred to as the prelude.

In the following sections we will describe the language by means of a series of examples.
These examples were chosen to exemplify various aspects of the language, and do not
necessarily reflect the best style. The PVS language is described in detail in [OSRSC99a].

3.1 A Simple Example: The Rational Numbers

The rational numbers are built into PVS, but for the sake of illustration we attempt to de-
velop a partial axiomatization. The examples in this section illustrate some simple syntactic
and semantic aspects of PVS. They show how theories are defined containing declarations
of types, variables, and constants. They also illustrate the definition of types, subtypes, and
constants, the declaration of axioms and formulas, and the consequences of typechecking
in the presence of subtypes. We start with the following theory introducing a type rat, a
constant zero of type rat, and a binary function /. These form the signature of the theory
rats.

rats: THEORY

BEGIN

rat : TYPE

zero : rat

/ : [rat, rat -> rat]

END rats

35

The PVS Language Using PVS

The type rat is uninterpreted; the only assumption made by the system is that it is
nonempty. Here the division function ‘/’ takes two arguments of type rat and returns
a value of type rat.20

The theory presented so far says little about the rational numbers; just that there is
a constant and a binary function defined on the type. The rationals are a model for this
theory, but so are the booleans, the integers, etc.21 The next thing to do is to introduce
axioms and definitions that further constrain the possible interpretations of the theory. We
can augment the rats theory above as follows:

rats : THEORY

BEGIN

rat : TYPE

zero : rat

/ : [rat, rat -> rat]

* : [rat, rat -> rat]

x, y: VAR rat

left_cancellation : AXIOM x * (y/x) = y

zero_times : AXIOM zero * x = zero

END rats

In this augmented theory, we have introduced the declaration for the multiplication opera-
tion ‘*,’ the identifiers x and y have been declared as logical variables that range over the
type rat, and we have added two axioms asserting properties of multiplication and division.

Though the left cancellation axiom looks plausible, there is a problem with it. A rea-
sonable “challenge” for our theory is the conjecture (EXISTS y : y /= zero).22 Unfortu-
nately, we can easily prove zero = y for any y, by substituting zero for x in left cancellation,
and applying zero times with (y/x) substituted for x. The conclusion zero = y is clearly not
intended for a model of the rational numbers. One way to repair the problem is to qualify
the left cancellation axiom so that it reads x /= zero IMPLIES x * (y/x) = y. In this way,
the axioms make no restrictions on the value returned by division when given a zero de-
nominator. This technique of having division by zero return some unspecified value is the
traditional approach used in logic and mathematics, but can lead to problems in specifi-
cations since most implementations prefer to treat this as an error condition, rather than
returning an arbitrary value.

To circumvent this problem, PVS makes it possible to specify division so that it is an
error to apply it when the denominator is zero. Here is an improved PVS specification:

20The division symbol ‘/’ has already been declared as an infix symbol in the PVS grammar.
21For example, we can interpret rat as the boolean type, zero as false, and / as AND.
22In PVS, “not equal” is written as “/=”.

36

The PVS Language Using PVS

rats : THEORY

BEGIN

rat : TYPE

x, y : VAR rat

zero : rat

nonzero : TYPE = \{x | x /= zero\}

/ : [rat, nonzero -> rat]

* : [rat, rat -> rat]

left_cancellation : AXIOM zero /= x IMPLIES x * (y/x) = y

zero_times : AXIOM zero * x = zero

END rats

Here the type nonzero is defined to be the type of elements of rat that are different from zero.
We call nonzero a predicate subtype of rat, since it consists of the elements of rat satisfying
a given predicate. In this new specification, the denominator argument may only range
over the nonzero elements of the type rat. In typechecking the occurrence of division in
left cancellation, there is a type correctness condition (TCC) generated by the typechecker
that is added to the theory as a declaration:

left_cancellation_TCC1: OBLIGATION

(FORALL (x: rat): zero /= x IMPLIES x /= zero)

Notice that the logical antecedent governing the occurrence of division is included as an
antecedent of left cancellation TCC1. This TCC is of course easily proved. In fact, if the
antecedent were written in the more natural form x /= zero, the TCC would not have been
generated. TCCs such as this are obligations, and they must be proved in order to show
that the theory is type correct. PVS allows the proof of a TCC to be deferred, but until
it has been discharged any proofs involving the theory rats directly or indirectly will be
considered incomplete.

For a slightly more sophisticated example, we can introduce the “less-than” relation and
the subtraction and unary minus operations, along with a statement asserting a property
of subtraction, division, and the less-than ordering.23

< : [rat, rat -> bool]

- : [rat, rat -> rat]

- : [rat -> rat]

div_test: FORMULA x /= y IMPLIES (y-x)/(x-y) < zero

Notice here that the relation < is declared as a function with range type bool representing
the booleans24 Typechecking the formula div test generates the TCC

div_test_TCC1: OBLIGATION

(FORALL (x:rat, y: rat): x /= y IMPLIES (x - y) /= zero)

23Note the overloading of the name -. All names of the same kind within a theory must be unique, with
the exception of expression kinds, which need only be unique up to the signature. The signature is enough
to distinguish these declarations.

24Functions with range type bool are often called predicates in PVS, and are also used to represents sets.
Some convenient notation for these interpretations is introduced later.

37

The PVS Language Using PVS

An alternative notation for predicate subtypes is illustrated by another example. If the
predicate non neg? (we often use a question mark in a name to indicate predicates) is
defined as

non_neg?(x): bool = NOT (x < zero)

then the expression (non neg?) denotes a subtype with the same meaning as the type ex-
pression {x | NOT (x < zero)}. The function returning the absolute value of a rational can
now be specified as

abs(x): (non_neg?) = (IF (x < zero) THEN -x ELSE x ENDIF)

When typechecked, this definition generates the TCCs

abs_TCC1: FORMULA

(FORALL (x: rat): (x < zero) IMPLIES non_neg?(-x))

abs_TCC2: FORMULA

(FORALL (x: rat): NOT (x < zero) IMPLIES non_neg?(x))

Note that the type of abs is [rat -> (non neg?)] which is more informative than the type
of [rat -> rat]. The advantage of this is that whenever abs occurs as an argument to a
function requiring a non neg? argument, no new obligations are generated. For example, a
square root function sqrt may be defined with type [(non neg?) -> (non neg?)] and freely
applied to the result of abs without incurring any new obligations.25

Clearly, we still have an inadequate specification of rational numbers since we do not
have the axioms required to prove the various TCCs that were generated. We will not
embark on the full axiomatization here, as no new features of the language are involved.
The development of the rational numbers is described in an appendix to the Language
Reference [OSRSC99a]. It is important to note that the PVS proof checker has an underlying
decision procedure that automatically proves many of the properties of the rational numbers.

Summarizing, we have illustrated how predicate subtypes can be used to circumscribe
the domain of partially defined operations such as division, and to more usefully delineate
the range of functions such as abs. We also examined how the use of predicate subtypes
in an expression could require certain type correctness conditions to be proved before the
expression is regarded as well-typed.

3.2 A More Sophisticated Example: Stacks

Perhaps the most hackneyed specification example is that of stacks. It is interesting there-
fore to examine if PVS can contribute anything novel to this well-worn example. For
starters, let us try to capture the signature of the stack operations.

25This is one of the advantages of having predicate subtypes; in a logic of partial terms we would be
forced to show that the term involving sqrt is well-defined every time it occurs, or to somehow cache the
information.

38

The PVS Language Using PVS

stacks : THEORY

BEGIN

stack : TYPE

empty : stack

push : [nat, stack -> stack]

top : [stack -> nat]

pop : [stack -> stack]

END stacks

In the theory stacks above, nat is the built-in type for natural numbers, stack is declared
as an uninterpreted type, and the empty is an uninterpreted constant of type stack. The
function push is declared to take a natural number and a stack and return a stack. The top

function takes a stack and returns a natural number. The pop function takes a stack and
returns a stack.

One immediate objection is that the above declaration only specifies the signature for
stacks of natural numbers and is therefore not sufficiently generic. PVS supports this by
providing parameterization at the theory level.26 With the stacks theory appropriately
parameterized, we get

stacks [t : TYPE] : THEORY

BEGIN

stack : TYPE

empty : stack

push : [t, stack -> stack]

top : [stack -> t]

pop : [stack -> stack]

END stacks

This declares a schema of stacks, one for each type. Within the stacks theory t is treated
as a fixed uninterpreted type. When the stacks theory is used by another theory it must
be instantiated. For example, the theory of stacks of natural number is just stacks[nat].
It is important to note that each instantiation of a theory yields a new signature; thus
instantiating with int and nat yields two different empty constants.

The new signature is still unsatisfactory since the signatures for pop and top permit
expressions such as pop(empty) and top(empty), for which it is difficult to ascribe a meaning.
The obvious solution in PVS is to mimic what was done with division and constrain the
domains of pop and top. We do this by introducing the predicate nonemptystack? in the new
specification below. Note that the expression [stack -> bool] for the type of a predicate has
been rewritten as the equivalent PRED[stack]. In addition, we add the usual stack axioms:

26An alternative approach would allow type variables and type abstraction in the language, but in the
presence of subtypes this greatly complicates the semantics.

39

The PVS Language Using PVS

stacks [t: TYPE] : THEORY

BEGIN

stack : TYPE

nonemptystack? : PRED[stack]

s : VAR stack

x, y : VAR t

ns : VAR (nonemptystack?)

empty : stack

push : [t, stack -> (nonemptystack?)]

top : [(nonemptystack?) -> t]

pop : [(nonemptystack?) -> stack]

pop_push : AXIOM pop(push(x, s)) = s

top_push : AXIOM top(push(x, s)) = x

push_pop_top : AXIOM push(top(ns), pop(ns)) = ns

push_empty : AXIOM empty /= push(x, s)

nonempty_empty : THEOREM NOT nonemptystack?(empty)

pop2_push2 : THEOREM pop(pop(push(x, push(y, s)))) = s

END stacks

Now we can explore the consequence of this specification by examining the formula dec-
laration pop2 push2. The left-hand side expression of this formula poses a problem for most
type systems since the type of pop(push(x, (push(y, s)))) (i.e., the argument to the outer-
most pop) is stack, whereas the domain type of pop is the more constrained (nonemptystack?).
In PVS, the typechecker generates the TCC

pop2_push2_TCC1: OBLIGATION

(FORALL (s: stack, x: t, y: t):

nonemptystack?(pop(push(x, push(y, s)))))

This TCC is easily proved from the axiom pop push.
We have now presented an abstract specification of stacks, showing how theories may

be parameterized and further illustrating the subtype mechanism. In the following section
we will explore different constructive definitions of stacks, and in Section 3.9 we will see
how to define stacks as an abstract datatype.

3.3 Implementing Stacks

Having satisfied ourselves that stacks can be specified using the signature and axioms above,
we might wish to introduce an alternative, more definitional specification of stacks. In this
new specification, we implement a stack with two components: a counter for recording the
number of elements in the stack, and an array containing the stack entries. One way to
implement such a stack in PVS is to use the tuple type constructor and another is to employ
records. We examine both approaches below.

40

The PVS Language Using PVS

newstacks [t: TYPE] : THEORY

BEGIN

i, j: VAR nat

stack : TYPE = [nat, ARRAY[nat -> t]]

s: VAR stack

x, y: VAR t

size(s): nat = proj_1(s)

elements(s): ARRAY[nat -> t] = proj_2(s)

e: t

nonemptystack?(s) : bool = (size(s) > 0)

empty: stack = (0, (LAMBDA j: e))

push(x,s): (nonemptystack?) =

(size(s)+1, elements(s) WITH [(size(s)):=x])

ns: VAR (nonemptystack?)

top(ns): t = elements(ns)(size(ns)-1)

pop(ns): stack = (size(ns)-1, elements(ns))

END newstacks

There are several points to note about the above specification. The 2-tuple implementing
stacks is specified by the type [nat, ARRAY [nat -> t]] whose first component is a natural
number and whose second component is an array with index type nat and element type t.
The array type expression ARRAY[nat -> t] is identical to the function type expression [nat

-> t] and the ARRAY keyword serves a descriptive rather than semantic purpose. The built-in
family of proj functions serve to access tuple components. The function size is defined to
return the size of stack s which is defined to be the first component of s, namely, proj 1(s).
The stack elements are “stored” in the array that is the second component of stack s, so
that elements(s) is defined as proj 2(s). The size function could also have been defined by
the declaration

size: [stack -> nat] = proj_1

which is merely a consequence of applying the extensionality axiom of higher-order logic
to the earlier definition of size. The next thing to note is that if the size of the stack is
i, for i > 0, then the i stack values are stored in the indices 0 to i-1. A stack expression
is constructed by means of a pair of comma-separated expressions enclosed in parentheses,
so that the empty stack is constructed by the expression (0, (LAMBDA j: e)) whose size
component is 0, and where the elements array is initialized to contain a default element
e. The push operation applied to an element x and a stack s constructs a stack with size
size(s) + 1, where the size(s) index of the elements array of s has been updated to be x.
The function update is done by the WITH construct as used in elements(s) WITH [(size(s)):=x].
Correspondingly, the pop operation decrements the stack size by one, but leaves the elements

array unchanged. Note that we have used predicate subtyping to ensure that pop is only
applied to stacks of positive size, i.e., nonempty stacks. The top operation applied to a
nonempty stack ns returns the (size(ns)-1)th element of the array elements(ns).

The above specification of stacks when implemented using the record type construction
of PVS rather than tuples, has the following form.

41

The PVS Language Using PVS

newstacks [t: TYPE] : THEORY

BEGIN

i, j: VAR nat

stack : TYPE = [# size: nat, elements : ARRAY[nat -> t] #]

s: VAR stack

x,y: VAR t

e: t

nonemptystack?(s) : bool = (size(s) > 0)

empty : stack = (# size := 0, elements := (LAMBDA j: e) #)

push(x,s): (nonemptystack?) =

(# size:= size(s)+1,

elements := elements(s) WITH [(size(s)):=x] #)

ns: VAR (nonemptystack?)

top(ns): t = (elements(ns)(size(ns)-1))

pop(ns): stack = (ns WITH [size := size(ns) -1])

END newstacks

In this new specification of stacks, the record type is constructed by the type expression
[# size: nat, elements : ARRAY[nat -> t] #] with fields size and elements. The expression
(# size := 0, elements := (LAMBDA j: e) #) constructs the empty stack. This specification
is slightly more pleasing than the one using tuples since the size and elements functions
were automatically generated from the record labels, and record updating can be used to
concisely define the pop operation.

There is a problem with both versions of newstacks that has to do with stack equality. If
we consider newstacks[nat], i.e., stacks of natural numbers, then both (# size := 0, elements

:= (LAMBDA i: 1) #) and (# size := 0, elements := (LAMBDA i: 2) #) represent empty stacks,
but they are unequal since they differ on their elements field. Similarly, with this represen-
tation, the formula pop(push(x, s)) = s fails to be a theorem, since the elements array may
differ at elements beyond size. We defer the discussion of this problem and its solution to
Section 3.8.

To summarize the discussion of the PVS language so far, we have examined theories,
declarations and definitions of types and constants, declarations of axioms and formulas,
predicate subtypes and the generation of type correctness conditions, and the definition,
construction and use of tuple and record types. So far we have only made limited use of
higher-order logic by using a function object to model the array that is used to contain the
elements of a stack. We next examine the use of theories in PVS.

3.4 Using Theories: Partial and Total Orders

There are several reasons for structuring specifications into (parameterized) theories as is
done in PVS. The primary ones are that it provides for modularization, and the use of
parameters allows more generic specifications, as we saw with stacks. In this section, we
focus on the use and parameterization of theories.

A preliminary example of theory is that of partial orders as transcribed in PVS below.27

27This is built in to PVS in a different form; again, the development here is for pedagogical purposes.
Note the use of “;” to terminate the definition of antisym. Semicolons are optional, except in circumstances
such as this when the parser needs more information. In this case, the semicolon informs the parser that
the operator < is a declaration rather than part of the preceding expression.

42

The PVS Language Using PVS

partial_order [t: TYPE] : THEORY

BEGIN

<= : PRED[[t,t]]

x, y, z: VAR t

refl: AXIOM x <= x

trans: AXIOM x <= y AND y <= z IMPLIES x <= z

antisym: AXIOM x <= y AND y <= x IMPLIES x = y;

< : PRED[[t,t]] = (LAMBDA x, y: x <= y AND x /= y)

END partial_order

Note that the type of a binary relation, such as <=, can be given either as [t, t -> bool],
or as a predicate on the tuple [t, t], as illustrated above. For any type t, the theory
partial order introduces a partial order relation ‘<=’ with the axioms of reflexivity, transi-
tivity, and antisymmetry. It also introduces a strict partial order relation ‘<’ along with its
definition.

The next example is the theory of total ordering which extends the original theory
partial order.

total_order [t: TYPE] : THEORY

EXPORTING ALL WITH partial_order[t]

BEGIN

IMPORTING partial_order[t]

x, y: VAR t

total: AXIOM x <= y OR y <= x

END total_order

There are several points to note with total order. It imports the theory partial order[t]

with the IMPORTING construct. It would have also been acceptable to import the generic
theory partial order since the typechecker is able to resolve the type of the occurrences of
<= in total order as belonging to partial order[t]. The EXPORTING clause that precedes the
body of the theory (as marked by BEGIN) causes every type, constant, and formula decla-
ration in total order to be visible in any theory that imports total order. In addition to
the declarations in total order, the EXPORTING clause also makes visible those declarations
in partial order[t] that are externally visible. When there is no EXPORTING clause, the de-
fault is that all declarations28 are visible, including all instances of imported theories that
were referenced.29 Generic theories cannot be exported, i.e., it is not possible to replace
partial order[t] in the EXPORTING clause with partial order.

3.5 Using Theories: Sort

The next series of examples illustrate the use of the partial order and total order theories in
several ways. These examples provide a generic specification of what it means for an array
to be sorted.

28With the exception of variable declarations.
29When a generic theory is imported, the typechecker determines the instance for each reference to an

entity declared in the generic theory—it is these instances that are exported.

43

The PVS Language Using PVS

sort [domain, range: TYPE] : THEORY

BEGIN

IMPORTING partial_order[range], total_order[domain]

Array_type: TYPE = ARRAY[domain -> range]

A, B, C: VAR Array_type

sorted?(A): bool =

(FORALL (x, y: domain): x < y IMPLIES NOT (A(y) <= A(x)))

END sort

The above theory is parameterized with respect to the types domain and range. It imports
the theories partial order[range] and total order[domain]. The predicate sorted? on arrays
of element type range and index type domain is defined to check that the partial ordering
on the elements never violates the total ordering on the indices. Note that the types
of the predicates < and <= are potentially ambiguous since they could come from either
partial order[range] and total order[domain] but the typechecker resolves their types from
the context of their application. If it was not possible to resolve the ambiguity from the
context, then it would have been necessary to write < as total order[domain].< in order to
distinguish it from partial order[domain].<.

One immediate problem with the above specification of sortedness is that it is specified
with respect to a fixed total ordering on the indices and a fixed partial order on the elements
of the array. It is therefore not sufficiently generic. The following revised specification of
the theory sort fixes this problem. It does this by taking the domain and range orderings
as parameters but then places restrictions that constrain the domain ordering to be total
and the range ordering to be partial. These restrictions are listed in the ASSUMING part
between the keywords ASSUMING and ENDASSUMING. The assuming part can only contain variable
declarations and assumptions. These assumptions have to be discharged whenever the
theory is instantiated with actual parameters. These proof obligations are automatically
generated by the typechecker.

sorta [domain, range: type,

d_order: PRED[[domain, domain]],

r_order: PRED[[range, range]]] : THEORY

BEGIN

ASSUMING

x, y, z: VAR domain

u, v, w: VAR range

d_refl: ASSUMPTION d_order(x,x)

d_trans: ASSUMPTION d_order(x, y) & d_order(y, z) => d_order(x, z)

d_antisym: ASSUMPTION d_order(x, y) & d_order(y, x) => x = y

d_total: ASSUMPTION d_order(x, y) OR d_order(y, x)

r_refl: ASSUMPTION r_order(u, v)

r_trans: ASSUMPTION r_order(u, v) & r_order(v, w) => r_order(u, w)

r_antisym: ASSUMPTION r_order(u, v) & r_order(v, u) => u = v

ENDASSUMING

Array_type: TYPE = ARRAY[domain->range]

A, B, C: VAR Array_type

sorted?(A): bool =

(FORALL (x, y: domain):

(d_order(x, y) & x /= y) => NOT r_order(A(y), A(x)))

END sorta

44

The PVS Language Using PVS

The above specification of sortedness might seem a little tedious given that we have
already specified partial and total orderings. This points to difficulties in the original
specifications for partial order and total order. In the first place, the constant ‘<=’ is declared
in the partial order theory; in general there is already a relation at hand, and the desire is
to check that it is a partial order. So we would like ‘<=’ to be a parameter to the theory.
But now the axioms are inappropriate; if the theory is parameterized with ‘/=’, for example,
then we have an inconsistency. There are two possible approaches to this. One is to only
allow the theory to be parameterized with relations that satisfy the axioms. This is done
by means of an ASSUMING part:

partial_order1 [t: TYPE, <=: PRED[[t,t]]] : THEORY

BEGIN

ASSUMING

x, y, z: VAR t

refl: ASSUMPTION x <= x

trans: ASSUMPTION x <= y AND y <= z IMPLIES x <= z

antisym: ASSUMPTION x <= y AND y <= x IMPLIES x = y

ENDASSUMING

< : PRED[[t,t]] = (LAMBDA x, y: x <= y AND x /= y)

END partial_order1

Now if the theory is instantiated with ‘/=’, the typechecker will generate proof obligations
which will be impossible to prove; thus such an instantiation is disallowed.

The alternative is to declare higher-order predicates instead of axioms:

partial_order2 [t: TYPE] : THEORY

BEGIN

<= : VAR PRED[[t,t]]

x, y, z: VAR t

reflexive?(<=): bool = (FORALL x: x <= x)

transitive?(<=): bool =

(FORALL x,y,z: x <= y AND y <= z IMPLIES x <= z)

antisymmetric?(<=): bool =

(FORALL x,y: x <= y AND y <= x IMPLIES x = y)

END partial_order2

The advantage of this theory is that it allows us to test directly the properties of a given
relation. The disadvantage is the the ‘<’ relation must be defined outside. The real advan-
tage comes in being able to combine properties, and use them as types. For example we
can add the declaration

partial_order?(<=): bool =

reflexive?(<=) AND transitive?(<=) AND antisymmetric?(<=)

and declare a relation R to be a variable ranging over partial orders on the type integer:

R: VAR (partial_order?[int])

We exploit this in the next theory specification, which describes the various ordering
relations as predicates on relations. The orderings theory introduces an infix variable <=

45

The PVS Language Using PVS

which is a reasonable thing to do in a higher-order logic. Now notice that the predicates
reflexive?, antisymmetric?, transitive?, etc., are higher-order operations since they are pred-
icates on predicates. The important concept of well-foundedness is also introduced in the
theory below. A partial order <= is said to be well-founded on a set A if A contains no
infinitely descending chain of elements . . . <=xn<= . . . <=x1<=x0. Another way of stating this
is that every nonempty subset of A must contain a minimal element with respect to <=.
In terms of higher-order logic, for every predicate qq on t that holds somewhere (i.e., is
nonempty), there is a minimal element that satisfies qq.

orderings[t: TYPE] : theory

BEGIN

x, y, z: VAR t

pp, qq: VAR PRED[t]

<= : VAR PRED[[t,t]]

reflexive?(<=): bool = (FORALL x: x <= x)

antisymmetric?(<=): bool = (FORALL x, y: x <= y AND y <= x IMPLIES x = y)

transitive?(<=): bool =

(FORALL x, y, z: x <= y AND y <= z IMPLIES x <= z)

partial_order?(<=): bool =

reflexive?(<=) AND antisymmetric?(<=) AND transitive?(<=)

linear?(<=): bool = (FORALL x, y: x <= y OR y <= x)

total_order?(<=): bool = partial_order?(<=) AND linear?(<=)

well_founded?(<=): bool =

(FORALL qq: (EXISTS y: qq(y))

IMPLIES (EXISTS (y: (qq)): (FORALL (x: (qq)): NOT x<=y)))

END orderings

Now we can give yet another specification of sortedness. The interesting thing to note
here is the occurrence of an IMPORTING clause in the parameter list of the theory to bring in
the information that is needed to typecheck the remaining parameters.

sorto [domain, range: type,

(IMPORTING orderings)

d_order: (total_order?[domain]),

r_order: (partial_order?[range])] : THEORY

BEGIN

Array_type: TYPE = ARRAY[domain->range]

A, B, C: VAR Array_type

sorted?(A): bool =

(FORALL (x, y: domain): (d_order(x, y) AND x/=y)

IMPLIES NOT r_order(A(y), A(x)))

END sorto

Another thing one can do with the orderings theory is define well-founded induction
which is a standard proof technique for proving properties of programs. The key idea is
that if we are trying to prove pp(x) for all x of type t, and there is a well-founded ordering
<= on t, then we can reason as follows. Consider the subset of elements y of t such that NOT

pp(y) holds. Suppose that this set is nonempty, then by well-foundedness, this subset must
contain a minimal element z, but the hypothesis of well founded induction can be used to
derive pp(z) since (FORALL y: y <= z AND y /= z IMPLIES pp(y)) holds trivially for a minimal

46

The PVS Language Using PVS

element z. Thus both pp(z) and NOT pp(z) hold, contradicting the assumption that the set
of y such that NOT pp(y) is nonempty.

well_founded_induction [t: type,

(IMPORTING orderings[t])

<= : (well_founded?)] : THEORY

BEGIN

x, y, z: VAR t

pp: VAR PRED[t]

wf_induction: AXIOM

(FORALL x: (FORALL y: y<=x AND y/= x IMPLIES pp(y))

IMPLIES pp(x))

IMPLIES (FORALL x: pp(x))

END well_founded_induction

The well founded induction theory makes use of higher-order logic to assert the given
ordering <= to be well-founded, and to state induction as an axiom for any predicate pp.

As we did in the case of ordering relations, we can build a theory defining various
properties of functions in order to further illustrate the capabilities of higher-order logic as
formalized by PVS.30

functions_ [domain, range : type] : THEORY

BEGIN

fun : VAR [domain -> range]

x, y : VAR domain

injective?(fun): bool = (FORALL x, y : fun(x) = fun(y) IMPLIES x=y)

surjective?(fun): bool = (FORALL (u : range): (EXISTS x : fun(x) = u))

bijective?(fun): bool = injective?(fun) AND surjective?(fun)

END functions_

If we then introduce a function as an injection, the PVS typechecker will require that we
demonstrate that its definition indeed satisfies the predicate injective?. For example

square [(IMPORTING functions_) domain, range : TYPE] : THEORY

BEGIN

x: VAR int

square: (injective?[int, nat]) = (LAMBDA (x): x * x)

END square

square generates an unprovable TCC thereby revealing an error in this construction.
Summarizing, we have examined some more advanced capabilities of the language and

logic of PVS. The parameterization and use of theories was illustrated in all the examples
in this section. The theories orderings, well founded induction, and functions illustrate the
higher-order aspects of the logic as well. We also noted the capability of the typechecker in
resolving ambiguities in naming from the application context.

30Both well-founded induction and functions are built in to the PVS prelude (theories wf induction and
functions, respectively) and may not be redefined, hence the name variations introduced here.

47

The PVS Language Using PVS

3.6 Sets in Higher-order Logic

In this section, we expand on the capabilities of higher-order logic with a naive encoding
of the various set-theoretic operations. We stay consistent with the higher-order logic
view of sets as predicates. In this case the theory sets is parameterized so that we are
talking about predicates over a type T. The element x is a member of a set a if and only
if a(x) is TRUE. The union and add operation is defined in terms of disjunction (OR), and
the intersection and difference operations are defined in terms of conjunction (AND). The
extensionality axiom asserts that if sets a and b have exactly the same members, then they
are equal. Extensionality for sets can be proved from extensionality for functions so it is
stated below as a lemma.

sets_ [T: TYPE] : THEORY

BEGIN

set: TYPE = SETOF[T]

member(x:T,a:set): bool = a(x)

union(a,b:set): set = {x:T | member(x,a) OR member(x,b)}

intersection(a,b:set): set = {x:T | member(x,a) AND member(x,b)}

difference(a,b:set) : set = {x:T | member(x,a) AND NOT member(x,b)}

add(x:T,a:set) : set = {y:T | x = y OR member(y,a)}

singleton(x:T) : set = {y:T | y = x}

subset?(a,b:set) : bool = (FORALL (z:T) : member(z,a) => member(z,b))

strict_subset?(a,b:set) : bool = subset?(a,b) AND a /= b

empty?(a:set) : bool = (FORALL (x:T) : NOT member(x,a))

emptyset: set = {x:T | FALSE}

fullset: set = {x:T | TRUE}

extensionality: LEMMA

FORALL (a,b: set):

(FORALL (x:T): member(x,a) = member(x,b)) => (a = b)

END sets_

Sequences provide yet another nice illustration of the power of the PVS higher-order
logic. We can formalize infinite sequences of elements from some type T as functions of type
[nat -> T], where nat is the type of natural numbers. Then the nth element of a sequence
seq is just seq(n). The sequence that is obtained from seq by removing the first n elements
is defined as suffix(seq, n).

sequences_[T: TYPE] : THEORY

BEGIN

sequence : TYPE = [nat->T]

nth(seq: sequence, n: nat): T = seq(n)

suffix(seq:sequence, n:nat): sequence =

(LAMBDA (i:nat): seq(i+n))

first(seq: sequence): T = nth(seq, 0)

rest(seq: sequence): sequence = suffix(seq, 1)

END sequences_

Both sets and sequences are employed heavily in specification writing and are built in to
the PVS prelude.31

31PVS prelude theories may be viewed via the command M-x view-prelude-theory (M-x vpt). The
command M-x view-prelude-file (M-x vpf) displays the entire prelude.

48

The PVS Language Using PVS

3.7 Recursion

In this section we discuss recursive declarations. We start with a simple example, the
factorial function:

factorial(x:nat): RECURSIVE nat =

IF x = 0 THEN 1 ELSE x * factorial(x - 1) ENDIF

MEASURE (LAMBDA (x:nat): x)

This is similar to a constant declaration, except that the defining expression references
factorial, which is the function being defined. In addition, there is a MEASURE function
specified. In PVS, all definitions are total, and form a conservative extension.32 In order
to guarantee these conditions, a MEASURE function is required. This function has the same
domain as the definition, but its range is nat.33 The MEASURE function is used to show that
the definition terminates, by generating an obligation that the MEASURE decreases with each
call:

factorial_TCC2: OBLIGATION

(FORALL (x: nat): NOT x = 0 IMPLIES x - 1 < x)

Note that the context ‘NOT x = 0’ is included in the termination TCC. PVS does not allow
mutual recursion directly, although the same effect may be had by using axioms or by
translating the mutually recursive forms to higher order, so this is not a real restriction.

3.8 Dependent Typing

In this section, we illustrate a more sophisticated form of typing that can involve dependen-
cies between the components of a tuple or a record type, and also between the range and
domain of a function type. As we have already seen, predicate subtyping makes it possible
to express properties within the type language, and dependent typing significantly enhances
this capability.

To explore dependent typing, we return to the example of newstacks. There the type stack

was defined as the record type [# size: nat, elements : ARRAY[nat -> t] #]. We noted that
this specification would distinguish between two empty stacks simply because they contained
different elements arrays, even though the contents of the elements array are irrelevant when
the the size field is 0. What we would like is to specify a record with two fields, size and
elements, where the type of the elements field varied according to the contents of the size

field. We can in fact express such a record type in PVS so that the definition of the type
stack becomes

stack : TYPE =

[# size: nat, elements : ARRAY[{i| i<size} -> t] #]

Note that the index type of the elements array has been restricted to the natural numbers
below the contents of the size field. Such a record type is an instance of a dependent type.
With this form of dependent typing, the newstacks specification can be written in PVS as
follows.

32This means that (new) inconsistencies are not introduced as a result of adding a new definition.
33The range may be the constructive ordinals instead, but we will not be discussing that further here.

49

The PVS Language Using PVS

newstacks [t: TYPE] : THEORY

BEGIN

i: VAR nat

stack : TYPE = [# size: nat, elements: ARRAY[\{i| i<size\} -> t] #]

s: VAR stack

x,y: VAR t

e: t

nonemptystack?(s) : bool = (size(s) > 0)

empty: stack =

(# size := 0, elements := (LAMBDA (j: \{i|i<0\}): e) #)

push(x,s): (nonemptystack?) =

(# size:= size(s)+1,

elements := elements(s) WITH [(size(s)):=x] #)

ns: VAR (nonemptystack?)

pop(x,ns): stack =

(# size := size(ns) -1,

elements := (LAMBDA (j: {i|i<size(ns)-1}):

elements(ns)(j)) #)

top(ns): t = (elements(ns)(size(ns)-1))

END newstacks

There are a number of subtleties to the above specification. The empty stack contains
an elements array with an empty index type. Now any two stacks with the size field set to
zero will be equal since any element arrays will be treated as equal when compared over the
empty index type.

The value returned by the push operation is a stack where the size field is one greater
than that of the input stack. The type of the elements field of this stack is therefore different
from that of the input stack. There is an additional index where the elements array must
be defined, and the update operation (using the WITH construct) ensures that the elements

field is in fact defined on this additional index.
The value returned by the pop operation is a stack in which the size field is one less than

that of the input stack and the elements array is defined on one fewer indices.34 Given these
definitions, the formula pop(push(x, s)) = s is provable.

3.9 Abstract Datatypes: Stacks

In this section we describe one of the more powerful features of the PVS language: abstract
datatypes. We will once again be using stacks for illustrative purposes.

The abstract stacks theory of Section 3.2 contains axioms providing the usual algebraic
specification of stacks. However, PVS has a mechanism for automatically generating a com-
plete axiomatization for such a theory from a very succinct description. Thus an alternative
specification for stacks would be

34A slightly abbreviated form of the LAMBDA expression: (LAMBDA (i|i<size(ns)-1): elements(ns)(i))

is also possible. To appreciate the subtlety of this example, note the considerable care necessary when
constructing a new record of type stack to insure that the domains of elements match properly.

50

The PVS Language Using PVS

stack [t: TYPE]: DATATYPE

BEGIN

empty: emptystack?

push(top: t, pop: stack) : nonemptystack?

END stack

Notice that the keyword DATATYPE distinguishes this from an ordinary THEORY. In this spec-
ification, empty and push are constructors, top and pop are accessors, and emptystack? and
nonemptystack? are recognizers of the parameterized stack type. In addition to generating
the signatures given in the previous stacks theory, this specification automatically generates
a new theory (and file) called stack adt containing35:

• Extensionality axioms for the constructors, e.g.,

stack_push_extensionality: AXIOM

(FORALL (nonemptystack?_var: (nonemptystack?),

nonemptystack?_var2: (nonemptystack?)):

top(nonemptystack?_var) = top(nonemptystack?_var2)

AND pop(nonemptystack?_var) = pop(nonemptystack?_var2)

IMPLIES nonemptystack?_var = nonemptystack?_var2);

• An eta axiom:

stack_push_eta: AXIOM

(FORALL (nonemptystack?_var: (nonemptystack?)):

push(top(nonemptystack?_var), pop(nonemptystack?_var))

= nonemptystack?_var);

• Accessor/constructor axioms, e.g.,

stack_pop_push: AXIOM

(FORALL (push1_var: t, push2_var: stack):

pop(push(push1_var, push2_var)) = push2_var);

• An induction scheme:

stack_induction: AXIOM

(FORALL (p: [stack -> boolean]):

p(empty) AND

(FORALL (push1_var: t, push2_var: stack):

p(push2_var) IMPLIES p(push(push1_var, push2_var)))

IMPLIES (FORALL (stack_var: stack): p(stack_var)));

• Functions distributing predicates over the stack base type36:

35Disjointness and inclusion axioms are not explicitly generated, but are built in to the prover (principally
through the semantics of induction and the case construct).

36These functions are available both in curried form (shown above) and uncurried form.

51

The PVS Language Using PVS

every(p: PRED[t])(a: stack): boolean =

CASES a OF

empty: TRUE,

push(push1_var, push2_var):

p(push1_var) AND every(p)(push2_var)

ENDCASES

some(p: PRED[t])(a: stack): boolean =

CASES a OF

empty: FALSE,

push(push1_var, push2_var):

p(push1_var) OR some(p)(push2_var)

ENDCASES

• A subterm function:

<<(x: stack, y: stack): boolean =

CASES y OF

empty: FALSE,

push(push1_var, push2_var): x = push2_var OR x << push2_var

ENDCASES

• A well-foundedness axiom:

stack_well_founded: AXIOM well_founded?[stack](<<);

• A recursive combinator37:

reduce_nat(emptystack?_fun: nat, nonemptystack?_fun: [[t, nat] -> nat]):

[stack -> nat] =

LAMBDA (stack_var: stack):

CASES stack_var OF

empty: emptystack?_fun,

push(push1_var, push2_var):

nonemptystack?_fun(push1_var,

reduce_nat(emptystack?_fun,

nonemptystack?_fun)

(push2_var))

ENDCASES

The recursive combinator allows the specification of functions such as length38:

length(s:stack): nat =

reduce_nat(0, (LAMBDA (x:t, n:nat): n + 1))(s)

37Another function, reduce ordinal, that reduces a stack to an ordinal rather than a natural number is
also generated.

38In order to preserve soundness, PVS requires all user-defined recursive functions to include a measure,
which is used to generate termination conditions. The primary use of the recursive combinator is to build
measure functions for recursive definitions. (Measure functions themselves cannot usually be defined by
recursive definitions, since those definitions require an existing measure function.)

52

The PVS Proof Checker Using PVS

• In addition to the recursive combinator used above (which is specialized to the con-
struction of measure functions), a fully general recursive combinator is generated in a
separate parameterized theory named stack adt reduce.

• Another separate parameterized theory, providing a mapping function on stacks, is
also generated39:

stack_adt_map[t: TYPE, t1: TYPE]: THEORY

BEGIN

IMPORTING stack_adt

map(f: [t -> t1])(a: stack[t]): stack[t1] =

CASES a OF

empty: empty[t1],

push(push1_var, push2_var):

push[t1](f(push1_var), map(f)(push2_var))

ENDCASES

END stack_adt_map

3.10 Abstract Datatypes: Terms

More complicated examples of abstract datatypes may be given. For example, an abstract
term structure may be defined as below

term [id, varid: TYPE] : DATATYPE

BEGIN

const(cid: id): const?

variable(vid : varid) : var?

lamb(bnd:(var?), body:term) : lamb?

app(op: term, args: list[term]): app?

END term

Note that the args accessor is of type list[term]. There are restrictions on the types allowed
for accessors; in this case the only allowable types available for accessors involving the type
term are: term, list[term], finite set[term], or sequence[term]. There is no restriction on type
expressions that do not reference term. Some of the axioms generated for abstract datatypes
are modified when accessors are of complex types; here, in particular, the induction axioms
and recursive combinators generated are modified to handle the list argument.

4 The PVS Proof Checker

The PVS Proof Checker is also referred to as an interactive theorem prover. It is much more
automated than the low-level “proof editors” that support some specification notations, but
operates under the user’s direction and is therefore more controllable than purely automatic
theorem provers.

39The map function is also available in curried form (shown above) and uncurried form.

53

The PVS Proof Checker Using PVS

4.1 Introduction

Just as we execute programs to check if they return the desired result, we subject high-
level functional descriptions of a system to challenges by demanding proofs of desirable
properties. We call such challenges putative theorems. Here are some simple examples:

• If a function that reverses a list has been correctly specified, then we should be able
to prove that we get the original list by reversing a list twice.

• When a train is allowed into a railroad crossing the gates must be down.

• If the operational semantics is correct, then it should conform to the denotational
semantics.

The point of these challenges is that the process of proving putative theorems quickly
highlights the gaps, errors, and inadequacies in the functional description. In some cases,
such a proof could also prove that the system as described meets its complete specification,
in other words, that it is correct . But it is the rare proof that succeeds. The typical proof
attempt fails, but such failure usually yields valuable insights that can be used to correct
oversights in the specification or formulation of the challenge. A useful automated proof
assistant must therefore play the role of an intelligent but implacable skeptic in rejecting
any argument that is not entirely watertight. Furthermore, in rejecting these arguments,
such a skeptic must pinpoint the source of the failure so that the argument can be corrected
and the dialogue resumed. The PVS proof checker is intended to serve as the skeptical party
in such a dialogue. The user supplies the steps in the argument and PVS applies them to
the goal of the proof progressively breaking them into simpler subgoals or to obvious truths
or falsehoods. If all of the subgoals are reduced to obvious truths, the proof attempt has
succeeded. Otherwise, the proof attempt fails either because the argument or the conjecture
is incorrect.

The central design assumptions in PVS are therefore that

• The purpose of an automated proof checker is not merely to prove theorems but also to
provide useful feedback from failed and partial proofs by serving as a rigorous skeptic.

• The most straightforward mechanizable criterion for a rigorous argument is that of a
formal proof.

• Automation serves to minimize the tedious aspects of formal reasoning while main-
taining a high level of accuracy in the book-keeping and formal manipulations.

• Automation should also be used to capture repetitive patterns of argumentation.

• The end product of a proof attempt should be a proof that, with only a small amount
of work, can be made humanly readable so that it can be subjected to the social
process of mathematical scrutiny.

In following these design assumptions, the PVS proof checker is more automated than
a low-level proof checker such as AUTOMATH [dB80], LCF [GMW79], Nuprl [Const86],
Coq [CH85], and HOL [Gor88], but provides more user control over the structure of the

54

The PVS Proof Checker Using PVS

proof than highly automated systems such as Nqthm [BM79, BM88] and Otter [McC90].
We feel that the low-level systems over-emphasize the formal correctness of proofs at the
expense of their cogency, and the highly automated systems emphasize theorems at the
expense of their proofs.

What is unusual about PVS is the extent to which aspects of the language, the type-
checker, and proof checker are intertwined. The typechecker invokes the proof checker
in order to discharge proof obligations that arise from typechecking expressions involving
predicate subtypes or dependent types. The proof checker also makes heavy use of the
typechecker to ensure that all expressions involved in a proof are well-typed. This use of
the typechecker can also generate proof obligations that are either discharged automatically
or are presented as additional subgoals. Several aspects of the language, particularly the
type system, are built into the proof checker. These include the automatic use of type
constraints by the decision procedures, the simplifications given by the abstract datatype
axioms, and forms of beta-reduction and extensionality, Another less unusual aspect of
PVS is the extent to which decision procedures involving equalities and linear arithmetic
inequalities are employed.40 The most direct consequence of this is that the trivial, obvious,
or tedious parts of the proof are often entirely hidden from the displayed proof so that the
user can focus on the intellectually demanding parts of the proof, and the resulting proof
is also easier to read.

As with much else in PVS, the implementation philosophy of the proof checker has been
guided by the 80-20 rule, namely that 80% of the functionality of a nearly perfect system
can be built with 20% of the effort, and the remaining 20% of the functionality can take
up the remaining 80% of the effort. PVS attempts to provide much of the 80% of the
functionality that is easily implemented. Each PVS proof commands performs the function
that, in our experience, is typically required of it. To some reasonable extent, the less typical
functionality can be obtained by providing optional arguments to these proof commands.
In atypical instances, the burden of carrying out some manipulation falls squarely on the
user. Even in these instances, it is not too tedious to achieve one’s ends with the existing
proof commands in some fairly simple ways. The reader should let us know if any of our
design decisions are found to be ill-considered.

In order to learn how to use the PVS proof checker, one must first understand the
sequent representation used by PVS to represent proof goals, the commands used to move
around and undo parts of the proof tree, and the commands used to get help. One must
then understand the syntax and effects of proof commands used to build proofs. Many
of these commands are extremely powerful even in their simplest usage. Several of these
commands can be more carefully directed by supplying them with one or more optional
arguments. The advanced user will also need to understand how to define proof strategies
that capture repetitive patterns of proof commands, and commands used for displaying,
editing, and replaying proofs.

Section 4.2 provides the basic information needed to get started with the PVS proof
checker. The remaining sections give a collection of typical examples of how the proof
checker is used. The PVS Proof Checker Reference Manual [SORSC99] contains detailed
descriptions of the PVS proof commands.

40The Ontic system [McA89] is a proof checker where decision procedures are ubiquitously used.
Nqthm [BM79,BM88], Eves [PS89], and IMPS [FGT91] also rely heavily on the use of decision procedures.

55

The PVS Proof Checker Using PVS

4.2 Preliminaries

Sequent Representation of Proof Goals. Each goal or subgoal in a PVS proof attempt
is a sequent of the form Γ ` ∆, where Γ is a sequence of antecedent formulas and ∆ is a
sequence of consequent formulas. The actual displayed form of a PVS sequent is

{-1} A1

{-2} A2

[-3] A3
...

|-------

[1] B1

{2} B2

{3} B3
...

where each Ai is an antecedent formula and each Bi is a consequent formula. The intuitive
reading of such a sequent is as the formula

(A1 ∧A2 ∧A3 ∧ . . .) ⊃ (B1 ∨B2 ∨B3 ∨ . . .).

Note that the antecedent formulas are numbered with negative integers and the consequent
formulas with positive integers. These numberings are used in directing the PVS proof
commands. If a formula number n appears as [n] in the sequent, it is an indication that
the formula was unaffected by the proof step that created the sequent. It is a good heuristic
is to examine the new formulas (i.e., the formulas whose number appears as {n}) in the
sequent to formulate the next proof step.

Starting and Quitting Proofs. As indicated earlier, the PVS Emacs command M-x

pr initiates a proof with the cursor on the formula to be proved. This brings up the *pvs*

buffer with the goal sequent and a Rule? prompt. Typing the PVS Emacs command M-x

help-pvs-prover brings up help on the prover commands. To quit out of an existing proof
attempt, type q or quit at the Rule? prompt. You will be asked whether you wish to save
the partial proof. Remember that if you answer yes, the old proof will be overwritten, and
if you answer no, you will lose the partial proof that you have developed up to this point.

Since PVS proof construction is carried out in a Lisp buffer, there is a small chance that
you could find yourself at a Lisp breakpoint with a ‘->’ prompt. Typing (restore) at this
point should almost always take you back to the nearest sensible proof goal and a Rule?

prompt.

The Structure of PVS Proofs. In the course of a proof, PVS builds up a tree of
sequents where each sequent is a subgoal generated from its parent sequent by a PVS proof
command. At any point in a proof attempt, the control is at a leaf sequent of such a proof
tree. At this point a PVS proof command can either

• cause control to be transferred to next proof sequent in the tree (postpone)

56

The PVS Proof Checker Using PVS

• undo a subtree by causing control to move up to some ancestor node in the proof tree
(undo)

• prove the current sequent causing control to move to the next remaining leaf sequent
in the tree

• generate subgoals so that control moves to the first of these subgoals, or

• leave the proof tree unchanged while providing some useful status information.

A proof is completed when there are no remaining unproved leaf sequents in the proof
tree. The resulting proof is saved and can be edited and rerun on the same or a different
conjecture.

4.3 Using the Proof Checker

Propositional Proof Commands

Now that we have gotten past the preliminaries, we can look at examples of some simple
interactions with the PVS proof checker. We start with the following PVS theory named
propositions that declares three Boolean constants A, B, and C, and states a theorem
named prop asserting that the conjunction of (A ⊃ (B ⊃ C)) and (A ⊃ B) and A implies C.

propositions : THEORY

BEGIN

A, B, C: bool

prop: THEOREM (A IMPLIES (B IMPLIES C)) AND (A IMPLIES B) AND A

IMPLIES C

END propositions

The proof script displayed below is the result of typing the PVS Emacs command M-x

pr on the formula prop and typing the inputs (shown in bold-face) in response to the Rule?
prompt or to other queries from PVS. The (flatten) command eliminates the disjunctive
connectives in the formula so as to flatten the formula out into the sequent. The next proof
command (split) picks the first available conjunctive formula, in this case (A IMPLIES

(B IMPLIES C)), and generates the three subgoals resulting from the conjunctive splitting
of this formula. PVS then observes that the first of these subgoals is trivially true since it
has C in both the antecedent and consequent. The (split) command applied to the second
subgoal generates two further subgoals which are both recognized as being trivially true,
as is the remaining subgoal from the earlier (split) command. The proof has now been
successfully completed generating the Q.E.D. message, and the new proof is automatically
saved. The system inquires whether the user would like to see an abbreviated version of
the proof which is then printed out following the yes response. For space reasons, we only
display a few lines of this printout in the script below. The two timings printed out at the
end provide the machine time and the human time for the proof attempt, respectively. The
Emacs command M-x show-last-proof can be used to bring up an abbreviated version of
the most recently completed proof that can be used as a guide in developing an informal

57

The PVS Proof Checker Using PVS

presentation of the proof. It displays the sequents at the branch points in the proof and
the commentary in between.

prop :

|-------

{1} (A IMPLIES (B IMPLIES C)) AND (A IMPLIES B) AND A IMPLIES C

Rule? (flatten)
Applying disjunctive simplification to flatten sequent,

this simplifies to:

prop :

{-1} (A IMPLIES (B IMPLIES C))

{-2} (A IMPLIES B)

{-3} A

|-------

{1} C

Rule? (split)
Splitting conjunctions,

this yields 3 subgoals:

prop.1 :

{-1} C

[-2] (A IMPLIES B)

[-3] A

|-------

[1] C

which is trivially true.

This completes the proof of prop.1.

prop.2 :

[-1] (A IMPLIES B)

[-2] A

|-------

{1} B

[2] C

Rule? (split)
Splitting conjunctions,

this yields 2 subgoals:

prop.2.1 :

{-1} B

[-2] A

|-------

[1] B

[2] C

which is trivially true.

This completes the proof of prop.2.1.

prop.2.2 :

[-1] A

|-------

{1} A

[2] B

[3] C

which is trivially true.

This completes the proof of prop.2.2.

This completes the proof of prop.2.

prop.3 :

[-1] (A IMPLIES B)

[-2] A

|-------

{1} A

[2] C

which is trivially true.

This completes the proof of prop.3.

Q.E.D.

58

The PVS Proof Checker Using PVS

Run time = 0.52 secs.

Real time = 14.32 secs.

Summary. The PVS Emacs command M-x pr is used to invoke the PVS proof checker.
Proof goals are represented as sequents with the formulas numbered. The command
(flatten) flattens the top-level disjunctive structure of all of the sequent formulas so that
there are no disjunctive formulas in the resulting subgoal sequent. (Variations: (flatten

*) is the same as (flatten). (flatten +) flattens only the consequent formulas, and
(flatten -) the antecedent formulas. (flatten -2 3 4) flattens formulas numbered -2,
3, and 4 in the goal sequent.) The command (split) picks the first top-level conjunctive
sequent formula and generates the subgoals that result from splitting this conjunction. As
with flatten, (split *) is the same as (split), (split -) splits the first antecedent con-
junction, (split +) the first consequent conjunction, and (split -3) splits the formula
numbered -3.

With the same example, we can now attempt to repeat the proof in order to explore
some other commands. When we now type M-x pr at the formula prop in the theory
proposition, PVS informs us that the formula has already been proved and asks whether
we wish to retry proving the formula. If we respond that we do, then PVS inquires whether
the existing proof should be rerun. If we choose to rerun the existing proof, the following
script is automatically generated.

prop :

|-------

{1} (A IMPLIES (B IMPLIES C)) AND (A IMPLIES B) AND A IMPLIES C

Rerunning step: (FLATTEN)

Applying disjunctive simplification to flatten sequent,

this simplifies to:

prop :

{-1} (A IMPLIES (B IMPLIES C))

{-2} (A IMPLIES B)

{-3} A

|-------

{1} C

Rerunning step: (SPLIT)

Splitting conjunctions,

this yields 3 subgoals:

prop.1 :

{-1} C

[-2] (A IMPLIES B)

[-3] A

|-------

[1] C

which is trivially true.

This completes the proof of prop.1.

.

.

.

Summary. Proofs can be rerun by responding suitably to the mini-buffer query when
M-x pr is invoked on a formula that has a proof or a partial proof. Another way to rerun
the existing proof is to type (rerun) as the first step in a manual proof.

59

The PVS Proof Checker Using PVS

We can retry the same example to explore some further proof commands. In this version,
we choose not to rerun the existing proof. Typing the inappropriate command (split)

results in No change to the proof state since there is no top level conjunctive formula in the
sequent. We then type (flatten) which flattens the formula followed by (split) which
generates three subgoals, the first of which is trivially true. We then type (postpone)

at the second subgoal. This causes the control to shift to the third subgoal which is also
trivially true. The control now returns to the second subgoal. A further (postpone) brings
us back to the same subgoal since there are no other pending subgoals. At this point, we
simply choose to quit the proof by typing q at the Rule? prompt. At the query, we choose
to save the partial proof from the current proof attempt.

prop :

|-------

{1} (A IMPLIES (B IMPLIES C)) AND (A IMPLIES B) AND A IMPLIES C

Rule? (split)
No change on: (SPLIT)

prop :

|-------

{1} (A IMPLIES (B IMPLIES C)) AND (A IMPLIES B) AND A IMPLIES C

Rule? (flatten)
Applying disjunctive simplification to flatten sequent,

this simplifies to:

prop :

{-1} (A IMPLIES (B IMPLIES C))

{-2} (A IMPLIES B)

{-3} A

|-------

{1} C

Rule? (split)
Splitting conjunctions,

this yields 3 subgoals:

prop.1 :

{-1} C

[-2] (A IMPLIES B)

[-3] A

|-------

[1] C

which is trivially true.

This completes the proof of prop.1.

prop.2 :

[-1] (A IMPLIES B)

[-2] A

|-------

{1} B

[2] C

Rule? (postpone)
Postponing prop.2.

prop.3 :

[-1] (A IMPLIES B)

[-2] A

|-------

{1} A

[2] C

which is trivially true.

This completes the proof of prop.3.

prop.2 :

[-1] (A IMPLIES B)

[-2] A

|-------

60

The PVS Proof Checker Using PVS

{1} B

[2] C

Rule? (postpone)
Postponing prop.2.

prop.2 :

[-1] (A IMPLIES B)

[-2] A

|-------

{1} B

[2] C

Rule? q
Do you really want to quit? (Y or N): y
Would you like the partial proof to be saved?

(***Old proof will be overwritten.***)

(Yes or No) yes
Use M-x revert-proof to revert to previous proof.

Run time = 0.77 secs.

Real time = 22.63 secs.

We can again type M-x pr and this time we can rerun the partial proof that we saved.
Notice that we are back at the subgoal where we quit the proof since this is the only
unfinished subgoal in the proof.

Summary. The command (postpone) is used to navigate cyclically around the unproved
subgoals in a proof. The PVS Emacs command M-x siblings displays all those subgoals
that share the same parent goal as the current subgoal in the proof. The PVS Emacs
command M-x ancestry displays the chain of goals leading back from the current goal
back to the root node of the proof tree. A q or quit can be used to quit out of a proof-
in-progress with the option of saving the partial proof. If a previous proof is overwritten
as a result, then the PVS Emacs command M-x revert-proof can be used to recover the
earlier proof. The PVS Emacs command M-x show-proof can be used to display a proof
in progress in such a way that parts of it can be edited and used as input to the rerun

proof command. The PVS Emacs command M-x edit-proof with the cursor positioned
on a formula in a theory brings up a buffer containing the proof of the formula displayed
as a tree of commands. This displayed proof can also be edited and rerun.

Quantifier Proof Commands

We now consider a simple example involving quantifiers displayed in the theory predicate

below.

predicate: THEORY

BEGIN

T : TYPE

x, y, z: VAR T

P, Q : [T -> bool]

pred_calc: THEOREM

(FORALL x: P(x) AND Q(x))

IMPLIES (FORALL x: P(x)) AND (FORALL x: Q(x))

END predicate

The proof script for this example starts with the application of (flatten) to the given
conjecture followed by the (split) command to break the consequent conjunction. In

61

The PVS Proof Checker Using PVS

the first branch of the proof, we use the (skolem) command to replace the universally
quantified variable x in the consequent formula numbered 1 with the (Skolem) constant X,
where X is new (i.e., undeclared) in the present context. The next step is to instantiate the
universally quantified variable x in the antecedent formula numbered -1 with the constant
X using the (inst) command. The first branch of the proof is then easily completed by
propositional reasoning. Note that the two quantifier steps, skolem and inst, only affect
the outermost quantifier of a formula in the sequent. Also, universally quantified variables
in consequent formulas are replaced by new constants, whereas antecedent universally quan-
tified variables are instantiated with terms. Existentially quantified variables behave dually.
The second branch of the proof employs minor variants of the skolem and inst. Here the
(skolem!) command picks the first “skolemizable” sequent formula and replaces the quan-
tified variables with internally generated constants (containing exclamations). The (inst?)
command picks the first instantiable sequent formula and tries to find an instantiation for
the quantified variables by matching against the rest of the sequent.

pred_calc :

|-------

{1} (FORALL x: P(x) AND Q(x)) IMPLIES (FORALL x: P(x)) AND (FORALL x: Q(x))

Rule? (flatten)
Applying disjunctive simplification to flatten sequent,

this simplifies to:

pred_calc :

{-1} (FORALL x: P(x) AND Q(x))

|-------

{1} (FORALL x: P(x)) AND (FORALL x: Q(x))

Rule? (split)
Splitting conjunctions,

this yields 2 subgoals:

pred_calc.1 :

[-1] (FORALL x: P(x) AND Q(x))

|-------

{1} (FORALL x: P(x))

Rule? (skolem 1 "X")
For the top quantifier in 1, we introduce Skolem constants: X

this simplifies to:

pred_calc.1 :

[-1] (FORALL x: P(x) AND Q(x))

|-------

{1} P(X)

Rule? (inst -1 "X")
Instantiating the top quantifier in -1 with the terms:

X

this simplifies to:

pred_calc.1 :

{-1} P(X) AND Q(X)

|-------

[1] P(X)

Rule? (prop)
By propositional simplification,

This completes the proof of pred_calc.1.

pred_calc.2 :

[-1] (FORALL x: P(x) AND Q(x))

|-------

{1} (FORALL x: Q(x))

Rule? (skolem!)
Skolemizing,

this simplifies to:

pred_calc.2 :

[-1] (FORALL x: P(x) AND Q(x))

62

The PVS Proof Checker Using PVS

|-------

{1} Q(x!1)

Rule? (inst?)
Found substitution:

x gets x!1,

Instantiating quantified variables,

this simplifies to:

pred_calc.2 :

{-1} P(x!1) AND Q(x!1)

|-------

[1] Q(x!1)

Rule? (prop)
By propositional simplification,

This completes the proof of pred_calc.2.

Q.E.D.

Summary. The command (skolem 1 "X") is used to introduce a new constant X in
place of the universally quantified variable in the formula numbered 1. (skolem 1 ("X"

" " "Z")) is to be used if there are three variables bound by the universal quantifier and
only the first and third are to be replaced by constants. (skolem + "X") carries out the
skolemization step for the first consequent universally quantified formula, and (skolem -

"X") for the first antecedent existentially quantified formula. The variations of the instan-
tiation command inst are similar to those of skolem. The command forms (skolem!),
(skolem! 1), (skolem! -), etc., are variants of skolem where the new constant names
are internally generated. The command (inst?) is a version of inst that tries to find
a matching substitution for a chosen quantified formula. It can also be supplied a partial
substitution to disambiguate the matching process as in (inst? - :subst ("x" "X")).
Both inst and inst? take an optional :copy? argument that can be given as T in order
to retain a copy of the original quantified formula in the sequent in case further instances
of the formula are needed, as in (inst + ("x" "X") :copy? T). The PVS rule inst-cp

is a version of the inst that automatically copies the quantified formula, and inst is the
non-copying variant. Note that optional arguments to PVS proof commands can be given
by order or by keyword. To find out the order, the keywords, and defaults for each of the
proof commands, use M-x help-pvs-prover.

Decision Procedures

The equality and linear inequality decision procedures are the workhorses of almost any
nontrivial PVS proof. The theory decisions displayed below illustrates some of the
power of these decision procedures. The formulas marked THEOREM are those that can
be proved using the decision procedures, and the ones marked CONJECTURE are either true
but cannot be proved solely by the decision procedures (like badarith1) or false (like
badarith and badarith2) and hence unprovable. The reader should invoke M-x pr on
each of the formulas in decisions and type either (then (skolem!)(ground)) or (then*
(skolem!)(flatten)(assert)) to the Rule? prompt to observe the effects of the decision
procedures. The command assert is used to either record equality or inequality informa-
tion into the data-structures used by the decision procedures, or to simplify propositional or

63

The PVS Proof Checker Using PVS

IF-THEN-ELSE structures in a formula, or carry out the automatic rewrites (to be described
below). The command (ground) is a combination of (prop) and (assert).

decisions: THEORY

BEGIN

x,y,v: VAR number

f: [number -> number]

eq1: THEOREM x = f(x) IMPLIES f(f(f(x))) = x

g : [number, number -> number]

eq2: THEOREM x = f(y) IMPLIES g(f(y + 2 - 2), x + 2) = g(x, f(y) + 2)

arith: THEOREM %Proved by decision procedures

x < 2*y AND y < 3*v IMPLIES 3*x < 18*v

badarith: CONJECTURE %Not proved; statement is false.

x < 2*y AND y < 3*v IMPLIES 3*x < 17*v

badarith1: CONJECTURE %Not proved; statement true but non-linear

x<0 AND y<0 IMPLIES x*y>0

i, j, k: VAR int

intarith: THEOREM %Proved by decision procedures

2*i < 5 AND i > 1 IMPLIES i = 2

badarith2: CONJECTURE %Not proved; stmt. true of integers but not reals.

2*x < 5 AND x > 1 IMPLIES x = 2

range : THEOREM %Proved by decision procedures

i > 0 AND i < 3 IMPLIES i = 1 OR i = 2

END decisions

We now consider an example proof that further illustrates the use of decision procedures.
The theory stamps below contains the formula asserting that any postage requirement of
8 cents or more can be met solely with 3 and 5 cent stamps, i.e., is the sum of some multiple
of 3 and some multiple of 5.

stamps: THEORY

BEGIN

i, three, five: VAR nat

stamps: LEMMA (FORALL i: (EXISTS three, five: i + 8 = 3 * three + 5 * five))

END stamps

In abstract terms, the proof proceeds by induction on i. In the base case, when i is 0,
the left-hand side is 8. Letting m and n both be 1 fulfills the equality. In the induction case,
we know that that i + 8 can be expressed as 3*M + 5*N for some M and N and we need
to find m and n such that i + 8 + 1 is 3*m + 5*n. If N = 0, then M is at least 3. We then
let m be M - 3 and n be 2, i.e., we remove three 3 cent stamps and add two 5 cent stamps
to get postage worth i + 8 + 1. If N > 0, then we simply remove a 5 cent stamp and add
two 3 cent stamps to prove the induction conclusion.

In the proof script below, the first command (induct "i") directs PVS to use induction
on i. PVS deduces from the type nat of i that natural number induction is to be used
and formulates an induction predicate based on the formula number 1 in the sequent. The
command induct, like prop and ground, is a compound step or a proof strategy . Two
subgoals are generated corresponding to the base and induction cases. In the base case,
the inst command is used to instantiate three with 1 and five with 1. The decision

64

The PVS Proof Checker Using PVS

procedures are invoked to prove the resulting trivial arithmetic equality. In the induction
case, the skolem command followed by flatten results in a sequent containing the induction
hypothesis in its antecedent and the conclusion in its consequent part. The witnesses
corresponding to the induction hypothesis are produced by the skolem! command. The
case-split according to five!1 = 0 is created by the case command. In the first five!1 =

0 case, we instantiate the existential quantifiers in the conclusion as required by the abstract
proof. Since the bound variable three has type nat (which is a subtype of the integer

type consisting of the non-negative integers), the inst command generates a second (type
correctness) subgoal demanding proof that three!1 - 3 is at least 0. Both subgoals are
discharged through the use of assert. In the case when five!1 = 0 is false, note that the
assumption of falsity is indicated by the formula five!1 = 0 appearing in the consequent
part of the goal sequent. We now follow an approach that is slightly different from that of
the previous branch; we use assert at this point. This has no visible effect on the sequent
to be proved, but the falsity of five!1 = 0 is noted by the decision procedures for use
deeper in the proof. Now note that the inst command instantiating five with five!1 -

1 does not generate the type correctness subgoal that was generated in the previous branch
since the decision procedures were able to automatically demonstrate that five!1 - 1 was
non-negative from the known information.

stamps :

|-------

{1} (FORALL i: (EXISTS three, five: i + 8 = 3 * three + 5 * five))

Rule? (induct ”i”)
Inducting on i,

this yields 2 subgoals:

stamps.1 :

|-------

{1} (EXISTS (three: nat), (five: nat): 0 + 8 = 3 * three + 5 * five)

Rule? (inst 1 1 1)
Instantiating the top quantifier in 1 with the terms:

1, 1,

this simplifies to:

stamps.1 :

|-------

{1} 0 + 8 = 3 * 1 + 5 * 1

Rule? (assert)
Simplifying, rewriting, and recording with decision procedures,

This completes the proof of stamps.1.

stamps.2 :

|-------

{1} (FORALL (j: nat):

(EXISTS (three: nat), (five: nat): j + 8 = 3 * three + 5 * five)

IMPLIES

(EXISTS (three: nat), (five: nat):

j + 1 + 8 = 3 * three + 5 * five))

Rule? (skolem + ”JJ”)
For the top quantifier in +, we introduce Skolem constants: JJ,

this simplifies to:

stamps.2 :

|-------

{1} (EXISTS (three: nat), (five: nat): JJ + 8 = 3 * three + 5 * five)

IMPLIES

(EXISTS (three: nat), (five: nat):

JJ + 1 + 8 = 3 * three + 5 * five)

Rule? (flatten)
Applying disjunctive simplification to flatten sequent,

this simplifies to:

stamps.2 :

65

The PVS Proof Checker Using PVS

{-1} (EXISTS (three: nat), (five: nat): JJ + 8 = 3 * three + 5 * five)

|-------

{1} (EXISTS (three: nat), (five: nat): JJ + 1 + 8 = 3 * three + 5 * five)

Rule? (skolem!)
Skolemizing,

this simplifies to:

stamps.2 :

{-1} JJ + 8 = 3 * three!1 + 5 * five!1

|-------

[1] (EXISTS (three: nat), (five: nat): JJ + 1 + 8 = 3 * three + 5 * five)

Rule? (case ”five!1 = 0”)
Case splitting on

five!1 = 0,

this yields 2 subgoals:

stamps.2.1 :

{-1} five!1 = 0

[-2] JJ + 8 = 3 * three!1 + 5 * five!1

|-------

[1] (EXISTS (three: nat), (five: nat): JJ + 1 + 8 = 3 * three + 5 * five)

Rule? (inst + ”three!1 - 3” 2)
Instantiating the top quantifier in + with the terms:

three!1 - 3, 2,

this yields 2 subgoals:

stamps.2.1.1 :

[-1] five!1 = 0

[-2] JJ + 8 = 3 * three!1 + 5 * five!1

|-------

{1} JJ + 1 + 8 = 3 * (three!1 - 3) + 5 * 2

Rule? (assert)
Simplifying, rewriting, and recording with decision procedures,

This completes the proof of stamps.2.1.1.

stamps.2.1.2 (TCC):

[-1] five!1 = 0

[-2] JJ + 8 = 3 * three!1 + 5 * five!1

|-------

{1} three!1 - 3 >= 0

Rule? (assert)
Simplifying, rewriting, and recording with decision procedures,

This completes the proof of stamps.2.1.2.

This completes the proof of stamps.2.1.

stamps.2.2 :

[-1] JJ + 8 = 3 * three!1 + 5 * five!1

|-------

{1} five!1 = 0

[2] (EXISTS (three: nat), (five: nat): JJ + 1 + 8 = 3 * three + 5 * five)

Rule? (assert)
Simplifying, rewriting, and recording with decision procedures,

this simplifies to:

stamps.2.2 :

{-1} 8 + JJ = 5 * five!1 + 3 * three!1

|-------

[1] five!1 = 0

{2} (EXISTS (three: nat), (five: nat): 9 + JJ = 5 * five + 3 * three)

Rule? (inst + ”three!1 + 2” ”five!1 - 1”)
Instantiating the top quantifier in + with the terms:

three!1 + 2, five!1 - 1,

this simplifies to:

stamps.2.2 :

[-1] 8 + JJ = 5 * five!1 + 3 * three!1

|-------

[1] five!1 = 0

{2} 9 + JJ = 5 * (five!1 - 1) + 3 * (three!1 + 2)

Rule? (assert)
Simplifying, rewriting, and recording with decision procedures,

66

The PVS Proof Checker Using PVS

This completes the proof of stamps.2.2.

This completes the proof of stamps.2.

Q.E.D.

Summary. PVS proofs make heavy use of decision procedures to simplify tedious equal-
ity and arithmetic reasoning so that the number of trivial subgoals can be minimized and to
keep the sequent formulas simple. The equality decision procedure employs congruence clo-
sure to propagate equality information along the term structure to quickly decide whether a
sequent containing equalities and other propositions is true. An antecedent formula P that
is not an equality can be treated as P= TRUE, and a consequent formula P as the equal-
ity P= FALSE. The assert rule is the most powerful form in which decision procedures
are applied. It is a combination of the record rule which records sequent formulas in the
data-structures used by the decision procedures, simplify which simplifies branching and
propositional structure using the decision procedures, beta which beta-reduces record, tu-
ple, function-update, LAMBDA, and abstract datatype redexes, and do-rewrite which applies
the rewrites specified by auto-rewrite and auto-rewrite-theory.

The (case 〈formula〉∗) command used in the above proof is extremely useful for case-
splitting on a formula. For example, if there is no straightforward way to simplify a formula
A to another formula A′, then one can case-split on A′ so that we can use A′ on one branch
and prove it from A on the other branch. The case command can also be used to replace
a term s by s′ by case-splitting on s = s′ and using the replace proof command (which is
not explained here) to carry out the replacement.

Using Definitions and Lemmas

For the purpose of this discussion, we use the following very simple example of a recursive
function that halves a given natural number.

half: THEORY

BEGIN

i, j, k: VAR nat

half(i): RECURSIVE nat =

(IF i = 0 THEN 0 ELSIF i = 1 THEN 0 ELSE half(i - 2) + 1 ENDIF)

MEASURE (LAMBDA i: i)

half_halves: THEOREM half(2 * i) = i

half_half: THEOREM half(2 * half(2 * i)) = i

END half

We show a segment of the proof of half halves where the definition of half is expanded.
Notice that the first use of expand brings in an unsimplified expansion of the definition of
half. When we undo this proof step and retry the same expand step following an assert,
not only is the expansion simplified, but the equality is itself reduced to TRUE.

67

The PVS Proof Checker Using PVS

.

.

.

half_halves.2 :

{-1} half(2 * J) = J

|-------

{1} half(2 * (J + 1)) = J + 1

Rule? (expand "half" +)
Expanding the definition of half

this simplifies to:

half_halves.2 :

[-1] half(2 * J) = J

|-------

{1} (IF 2 * (J + 1) = 0 THEN 0 ELSE half(2 * (J + 1) - 2) + 1 ENDIF) = J + 1

Rule? (undo)
This will undo the proof to:

half_halves.2 :

{-1} half(2 * J) = J

|-------

{1} half(2 * (J + 1)) = J + 1

Sure? (Y or N): y

half_halves.2 :

{-1} half(2 * J) = J

|-------

{1} half(2 * (J + 1)) = J + 1

Rule? (assert)
Invoking decision procedures,

this simplifies to:

half_halves.2 :

[-1] half(2 * J) = J

|-------

[1] half(2 * (J + 1)) = J + 1

Rule? (expand "half" +)
Expanding the definition of half

this simplifies to:

half_halves.2 :

[-1] half(2 * J) = J

|-------

{1} TRUE

which is trivially true.

.

.

.

The rewrite command is an alternative to expand, though rewrite can be used to
rewrite with both formulas and definitions. In the script below, the rewrite step replaces
the second of the above applications of expand. Notice that rewrite behaves slightly dif-
ferently from expand, but it too is sensitive to the facts recorded by the decision procedures
from a previous assert.

.

.

.

half_halves.2 :

[-1] half(2 * J) = J

|-------

[1] half(2 * (J + 1)) = J + 1

Rule? (rewrite "half" +)
Rewriting using half,

this simplifies to:

half_halves.2 :

[-1] half(2 * J) = J

|-------

{1} half(2 * (J + 1) - 2) + 1 = J + 1

Rule? (assert)
Invoking decision procedures,

68

The PVS Proof Checker Using PVS

This completes the proof of half_halves.2.

.

.

.

In summary, expand is used to expand definitions, and rewrite is used to rewrite using
definitions and formulas. Both employ decision procedures for simplification during rewrit-
ing. Decision procedures are also used to discharge any conditions (arising from a condi-
tional rewrite rule) and the type-correctness conditions arising from the lemma instantiation
applied by rewrite. The expand step is the preferred way to expand definitions.

Other Commands. We have described some typical commands, but have not mentioned
many others. A partial account of some of those we’ve omitted is given below; a complete,
annotated list of prover commands can be found in The PVS Prover Checker Reference
Manual [SORSC99]. The lemma command is used to bring in an instance of a lemma as
an antecedent sequent formula. The extensionality proof command is similarly used to
bring in the extensionality scheme given a suitable type expression, i.e., a function, record,
or tuple type or an abstract datatype. The beta rule is used to carry out beta-reduction of
redexes including those involving LAMBDA-abstraction, record access, tuple access, function
updates, and datatype expressions. The command delete can be used to drop irrelevant
sequent formulas; hide is a more conservative form of delete where the formula can be
restored using the reveal command. The PVS Emacs command M-x show-hidden shows
the hidden formulas. The command typepred can be used to make the subtype predi-
cates on a given expression explicit as sequent formulas. The lift-if command lifts IF-
branching to the top-level of a sequent formula through F(IF A THEN s ELSE t ENDIF)

being transformed to (IF A THEN F (s) ELSE F (t) ENDIF). The commands auto-rewrite
and auto-rewrite-theory are used to install rewrite rules to be used automatically by the
assert command.

Proof Checker Pragmatics

The PVS proofs in the tutorial examples reflect a very low level of automation and should be
viewed merely as pedagogical exercises. The proof checker actually provides several powerful
commands for the advanced user that make it possible to verify large classes of theorems
using only a small number of steps. For example, the grind command is usually a good
way to complete a proof that only requires definition expansion, and arithmetic, equality,
and quantifier reasoning. The decision procedure command assert is used very frequently
since it does simplification, automatic rewriting, and records the sequent formulas in the
decision procedure database. The inst? command is the most effective way to automatically
instantiate quantifiers of existential strength. The induct-and-simplify command is a
powerful way to construct proofs by induction. The commands induct-and-rewrite and
induct-and-rewrite! are variants of induct-and-simplify. These induction commands
are able to automatically complete a fairly large class of induction proofs.

It is not necessary to master all the proof commands in order to use the PVS proof
checker effectively. In general, it is advisable to learn the most powerful commands first
and only rely on the simpler commands when the powerful ones fail. For example, the

69

Two Hardware Examples Using PVS

initial step in a proof is usually skolemization, and the preferred and most powerful form
here is skosimp*. Similarly, induct-and-simplify or one of its variants should be used to
initiate induction proofs.

Typically, the creative choices in a proof are:

1. The induction scheme: One of the above induction commands should be employed
here.

2. The case analysis: If the case analysis is not explicit in the propositional structure,
then it might be implicit in an embedded IF-THEN-ELSE or CASES structure in which
case the lift-if command should be used to bring the case analyses to the surface of
the sequent where they can be propositionally simplified. Otherwise, the case analysis
has to be supplied explicitly using the case command.

3. The quantifier instantiations: The instantiation of antecedent universal and succedent
existential quantifiers is done automatically by the inst? command. When this fails,
the more manual inst and inst-cp commands should be used.

The bddsimp command is the most efficient way to do propositional simplification, but
prop will do when efficiency is not important. Propositional simplification has to be used
with care because it can generate many subgoals that share the same proof. The flatten

and split commands are used to do the propositional simplification more delicately.
User-defined proof strategies, similar to the tactics and tacticals of LCF, can be employed

by more advanced PVS users. A file containing definitions of basic strategies is distributed
with PVS and provides a good introduction to this topic. The PVS Prover Checker Refer-
ence Manual [SORSC99] can be consulted for additional information on user-defined proof
strategies.

Finally, it is helpful to be familiar with the PVS prelude theories, which provide very
useful background mathematics, as well as a rich source of examples.

5 Two Hardware Examples

In this final section, we develop two hardware examples that illustrate a more sophisti-
cated use of PVS and suggest the intellectual discipline involved in specifying and proving
industrial-strength applications. The pipelined microprocessor and n-bit ripple-carry adder
examples provide an opportunity to touch on modeling issues, specification styles, and hard-
ware proof strategies, as well as a chance to review many of the PVS language and prover
features described in earlier sections of this tutorial.41

5.1 A Pipelined Microprocessor

We first develop a complete proof of a correctness property of the controller logic of a
simple pipelined processor design described at a register-transfer level. The design and the

41One point worth noting that may not be apparent in reading these examples is that the process of
specification and verification is an iterative one in which proof is used not to certify a completed specification,
but as an aid to developing the specification.

70

Two Hardware Examples Using PVS

property verified are both based on the processor example given in [BCM+90]. The example
has been used as a benchmark for evaluating how well finite state-enumeration based tools,
such as model checkers, can handle datapath-oriented circuits with a large number of states
by varying the size of the datapath. From the perspective of a theorem prover, the size
of the datapath is irrelevant because the specification and proof are independent of the
datapath size. As a theorem proving exercise, the challenge is to see if the proof can be
done as automatically as a model checker proof.

Informal Description

Figure 11 shows a block diagram of the pipeline design. The processor executes instructions
of the form (opcode src1 src2 dstn), i.e., “destination register dstn in the register file
REGFILE becomes some ALU function determined by opcode of the contents of source regis-
ters src1 and src2. Every instruction is executed in three stages (cycles) by the processor:

1. Read: Obtain the proper contents of the register file at src1 and src2 and clock them
into opreg1 and opreg2, respectively.

2. Compute: Perform the ALU operation corresponding to the opcode (remembered in
opcoded) of the instruction and clock the result into wbreg.

3. Write: Update the register file at the destination register (remembered in dstndd) of
the instruction with the value in wbreg.

The processor uses a three-stage pipeline to simultaneously execute distinct stages of three
successive instructions. That is, the read stage of the current instruction is executed along
with the compute stage of the previous instruction and the write stage of the previous-to-
previous instruction. Since the REGFILE is not updated with the results of the previous and
previous-to-previous instructions while a read is being performed for the current instruction,
the controller “bypasses” REGFILE, if necessary, to get the correct values for the read. The

c
cc

#
##

......................................

-

-

-

?6

-

-

-

-

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

?
.

?

.

.

.

-

-

6

6

�

-

-

-

-

stall

REGFILE

opcode

U
L
A

CONTROL

dsntdddstnd

stalld
stalldd

wbreg
opreg2

opreg1

dstn

opcoded

src2
src1

Figure 11: A Pipelined Microprocessor

71

Two Hardware Examples Using PVS

processor can abort, i.e., treat as NOP, the instruction in the read stage by asserting the
stall signal true. An instruction is aborted by inhibiting its write stage by remembering
the stall signal until the write stage via the registers stalld and stalldd. We verify that
an instruction entering the pipeline at any time gets completed correctly, i.e., will write
the correct result into the register file, three cycles later, provided the instruction is not
aborted.

Formal Specification

PVS specifications consist of a number of files, each of which contains one or more theories.
The microprocessor specification is organized into three theories, selected parts of which

pipe[addr: TYPE, data: TYPE, opcodes: TYPE]: THEORY

BEGIN

IMPORTING signal, time

ASSUMING

addr_nonempty: ASSUMPTION (EXISTS (a: addr): TRUE)

data_nonempty: ASSUMPTION (EXISTS (d: data): TRUE)

opcodes_nonempty: ASSUMPTION (EXISTS (o: opcodes): TRUE)

ENDASSUMING

t: VAR time

%% Signal declarations

opcode: signal[opcodes]

src1, src2, dstn: signal[addr]

stall: signal[bool]

aluout: signal[data]

regfile: signal[[addr -> data]]

...

%% Specification of constraints on the signals

dstnd_ax: AXIOM dstnd(t+1) = dstn(t)

dstndd_ax: AXIOM dstndd(t+1)= dstnd(t)

.....

regfile_ax: AXIOM regfile(t+1) =

IF stalldd(t) THEN regfile(t)

ELSE regfile(t)

WITH [(dstndd(t)) := wbreg(t)]

ENDIF

opreg1_ax: AXIOM opreg1(t+1) =

IF src1(t) = dstnd(t) & NOT stalld(t)

THEN aluout(t)

ELSIF src1(t) = dstndd(t) & NOT stalldd(t)

THEN wbreg(t)

ELSE regfile(t)(src1(t)) ENDIF

opreg2_ax: AXIOM ...

aluop: [opcodes, data, data -> data]

ALU_ax: AXIOM aluout(t) = aluop(opcoded(t), opreg1(t),

opreg2(t))

correctness: THEOREM (FORALL t:

NOT(stall(t)) IMPLIES regfile(t+3)(dstn(t)) =

aluop(opcode(t), regfile(t+2)(src1(t)),

regfile(t+2)(src2(t))))

END pipe

Figure 12: Microprocessor Specification

are shown in Figures 12 and 13. (The complete specification can be found in [SSR95].)
The theory pipe (Figure 12) contains a specification of the design and a statement of the
correctness property to be proved. The theories signal and time, (Figure 13) imported by
pipe, declares the types signal and time used in pipe.

The theory pipe is parameterized with respect to the types of the register address,
data, and the opcode field of the instructions. A theory parameter in PVS can be either
a type parameter or a parameter belonging to a particular type, such as nat. Since pipe

72

Two Hardware Examples Using PVS

signal[val: TYPE]: THEORY

BEGIN

signal: TYPE = [time -> val]

END signal

time: THEORY

BEGIN

time: TYPE nat

END signal

Figure 13: Signal Specification

does not impose any restriction on its parameters, other than the requirement that they
be nonempty, which is stated in the ASSUMING part of the theory, one can instantiate them
with any type. Every entity declared in a parameterized theory is implicitly parameterized
with respect to the parameters of the theory. For example, the type signal declared in the
parameterized theory signal is a parametric type denoting a function that maps time (a
synonym for nat) to the type parameter T. (The type signal is used to model the wires in
our design.) By importing the theory signal uninstantiated in pipe, we have the freedom
to create any desired instances of the type signal.

In this example, we use a functional style of specification to model register-transfer-
level digital hardware in logic. In this style, the inputs to the design and the outputs of
every component in the design are modeled as signals. Every signal that is an output of a
component is specified as a function of the signals appearing at the inputs to the component.

This style should be contrasted with a predicative style, which is commonly used in
most HOL applications. In the predicative style every hardware component is specified
as a predicate relating the input and output signals of the component and a design is
specified as a conjunction of the component predicates, with all the internal signals used
to connect the components hidden by existential quantification. A proof of correctness for
a predicative style specification usually involves executing a few additional steps at the
start of the proof to essentially transform the predictative specification into an equivalent
functional style. After that, the proof proceeds similar to that of a proof in a functional
specification. The additional proof steps required for a predicative specification essentially
unwind the component predicates using their definitions and then appropriately instantiate
the existentially quantified variables. An automatic way of performing this translation is
discussed in [SSR95], which illustrates more examples of hardware design verification using
PVS.

Returning to our example, the microprocessor specification in pipe consists of two parts.
The first part declares all the signals used in the design—the inputs to the design and the
internal wires that denote the outputs of components. The composite state of REGFILE,
which is represented as a function from addr to data, is modeled by the signal regfile.
The signals are declared as uninterpreted constants of appropriate types. The second part
consists of a set of AXIOMs that specify the the values of the signals over time. (To conserve
space, we have only shown the specification of a subset of the signals in the design.) For
example, the signal value at the output of the register dstnd at time t+1 is defined to be that
of its input a cycle earlier. The output of the ALU, which is a combinational component,
is defined in terms of the inputs at the same time instant.

In PVS, we can use a descriptive style of definition, as illustrated in this example,
by selectively introducing properties of the constants declared in a theory as AXIOMs.

73

Two Hardware Examples Using PVS

Alternatively, we can use the definitional forms provided by the language to define the
constants. An advantage of using the definitions is that a specification is guaranteed to
be consistent. A disadvantage is that the resulting specification may be overly specific
(i.e., overspecified). An advantage of the descriptive style is that it gives better control
over the degree to which an entity is defined For example, we could have specified dstnd

prescriptively, using the conventional function definition mechanism of PVS, which would
have forced us to specify the value of the signal at time t = 0 to ensure that the function
is total. In the descriptive style used, we have left the value of the signal at 0 unspecified.

In the present example, the specifications of the signals opreg1 and opreg2 are the most
interesting of all. They have to check for any register collisions that might exist between the
instruction in the read stage and the instructions in the later stages and bypass reading from
the register file in case of collisions. The regfile signal specification is recursive since the
register file state remains the same as its previous state except, possibly, at a single register
location. The WITH expression is an abbreviation for the result of updating a function at
a given point in the domain value with a new value. Note that the function aluop that
denotes the operation ALU performs for a given opcode is left completely unspecified since
it is irrelevant to the controller logic.

The theorem (correctness) to be proved states a correctness property about the execu-
tion of the instruction that enters the pipeline at t, provided the instruction is not aborted,
i.e., stall(t) is not true. The equation in the conclusion of the implication compares the
actual value (left hand side) in the destination register three cycles later, when the result
of the instruction would be in place, with the expected value. The expected value is the
result of applying the aluop corresponding to the opcode of the instruction to the values
at the source field registers in the register file at t+2. We use the state of the register file
at t+2 rather than t to allow for the results of the two previous instructions in the pipeline
to be completed.

Proof of Correctness

Once the specification is complete, the next step is to typecheck the file, which parses and
checks for semantic errors, such as undeclared names and ambiguous types. As we have
already seen, typechecking may build new files or internal structures such as type correctness
conditions (TCCs) that represent proof obligations that must be discharged before the pipe

theory can be considered typechecked. The typechecker does not generate any TCCs in the
present example. If, for example, one of the assumptions, say for addr, in the ASSUMING

part of the theory was missing, the typechecker would generate the following TCC to show
that the addr type is nonempty. The declaration of the signal src1 forces generation of
this TCC because a function is nonexistent if its range is empty.

% Existence TCC generated (line 17) for src1: signal[addr]

% May need to add an assuming clause to prove this.

% unproved

src1_TCC1: OBLIGATION (EXISTS (x1: signal[addr]): TRUE);

By way of review, the basic objective of developing a proof in PVS as in other subgoal-
directed proof checkers (e.g., HOL), is to generate a proof tree in which all of the leaves are

74

Two Hardware Examples Using PVS

trivially true. The nodes of the proof tree are sequents, and in the prover you are always
looking at an unproved leaf of the tree. The current branch of a proof is the branch leading
back to the root from the current sequent. When a given branch is complete (i.e., ends in a
true leaf), the prover automatically moves on to the next unproved branch, or, if there are
no more unproven branches, notifies you that the proof is complete.

The primitive inference steps in PVS are a lot more powerful than in HOL; it is not
necessary to build complex tactics to handle tedious lower level proofs in PVS. A knowl-
edgeable PVS user can typically get proofs to go through mostly automatically by making
a few critical decisions at the start of the proof. However, as noted previously, PVS does
provide the user with the equivalent of HOL’s tacticals, called strategies, and other features
to control the desired level of automation in a proof.

The proof of the microprocessor property shown below follows a certain general pattern
that works successfully for most hardware proofs. This general proof pattern, variants
of which have been used in other verification exercises [KSK93, ALW93], consists of the
following sequence of general proof tasks.

Quantifier elimination: Since the decision procedures work on ground formulas, the user
must eliminate the relevant universal quantifiers by skolemization or selecting variables
on which to induct and existential quantifiers by suitable instantiation.

Unfolding definitions: The user may have to simplify selected expressions and defined
function symbols in the goal by rewriting using definitions, axioms or lemmas. The
user may also have to decide the level to which the function symbols have to rewritten.

Case analysis: The user may have to split the proof based on selected boolean expressions
in the current goal and simplify the resulting goals further.

Each of the above tasks can be accomplished automatically using a short sequence
of primitive PVS proof commands. The complete proof of the theorem is shown below.
Selected parts of the proof session are reproduced below as we describe the proof.

1: (then* (skosimp)

2: (auto-rewrite-theory ‘‘pipe’’ :always? t)

3: (repeat (do-rewrite))

4: (apply (then* (repeat (lift-if))

5: (bddsimp)

6: (assert))))

In the proof, the names of strategies are shown in italics and the primitive inference
steps in type-writer font. (We have numbered the lines in the proof for reference.)
Then* applies the first command in the list that follows to the current goal; the rest of
the commands in the list are then applied to each of the subgoals generated by the first
command application. The apply command used in line 5 makes the application of a
compound proof step implemented by a strategy behave as an atomic step.

The first goal in the proof session is shown below. It consists of a single formula (labeled
{1}) under a dashed line. This is a sequent ; formulas above the dashed lines are called
antecedents and those below are called succedents. The interpretation of a sequent is that
the conjunction of the antecedents implies the disjunction of the succedents.

75

Two Hardware Examples Using PVS

correctness :

|-------

{1} (FORALL t: NOT (stall(t))

IMPLIES regfile(t + 3)(dstn(t)) =

aluop(opcode(t), regfile(t + 2)(src1(t)),

regfile(t + 2)(src2(t))))

The quantifier elimination task of the proof is accomplished by the command skosimp,
which skolemizes all the universally quantified variables in a formula and flattens the sequent
resulting in the following goal. Note that stall(t!1) has been moved to the succedent in
the sequent because PVS displays every atomic formula in its positive form.

Rule? (skosimp)

Skolemizing and flattening, this simplifies to:

correctness :

|-------

{1} (stall(t!1))

{2} regfile(t!1 + 3)(dstn(t!1))

=

aluop(opcode(t!1), regfile(t!1 + 2)(src1(t!1)),

regfile(t!1 + 2)(src2(t!1)))

The next task—unfolding definitions—is performed by the commands in lines 2 through
3. PVS provides a number of ways of unfolding definitions ranging from unfolding one
step at a time to automatic rewriting that performs unfolding in a brute-force fashion.
Brute-force rewriting usually results in larger expressions than controlled unfolding and,
hence, potentially larger number of cases to consider. If a system provides automatic and
efficient rewriting and case analysis facilities, then the automatic approach is viable, as
illustrated here. In PVS automatic rewriting is performed by first entering the definitions
and AXIOMs to be used for unfolding as rewrite rules. Once entered, the commands that
perform rewriting as part of their repertoire, such as do-rewrite and assert, repeatedly
apply the rewrite rules until none of the rules is applicable. To control the size of the
expression resulting from rewriting and the potential for looping, the rewriter uses the
following restriction for stopping a rewrite: If the right-hand-side of a rewrite is a conditional
expression, then the rule is applied only if the condition simplifies to true or false.

Here our aim is to unfold every signal in the sequent so that every signal expression
contains only the start time t!1. So, we make a rewrite rule out of every AXIOM in the
theory pipe by means of the command auto-rewrite-theory on line 2. We also force
an over-ride of the default restriction for stopping rewriting by setting the tag42 always?

to true in the auto-rewrite-theory command and embed do-rewrite inside a repeat

loop to force maximum rewriting. In the present example, the rewriting is guaranteed to
terminate because every feedback loop is cut by a sequential component.

At the end of automatic rewriting, the succedent we are trying to prove is in the form of
an equation on two deeply nested conditional expressions as shown below in an abbreviated

42Tags are one of the ways in which PVS permits the user to modify the functionality of proof commands.

76

Two Hardware Examples Using PVS

fashion. The various cases in conditional expression shown above arise as a result of the
different possible conflicts between instructions in the pipeline. The equation we are trying
to prove contains two distinct, but equivalent conditional expressions, as in IF a THEN

b ELSE c ENDIF = IF NOT a THEN c ELSE b ENDIF, that can only be proved equal by
performing a case-split on one or more of the conditions. While assert simplifies the leaves
of a conditional expression assuming every condition along the path to the leaves holds,
it does not split propositions. One way to perform the case-splitting task automatically
is to “lift” all the IF-THEN-ELSEs to the top so that the equation is transformed into a
propositional formula with unconditional equalities as atomic predicates. After performing
such a lifting, we can try to reduce the resulting proposition to true using the propositional
simplification command bddsimp. If bddsimp does not simplify the proposition to true,
then it is most likely the case that equations at one or more of the leaves of the proposition
need to be further simplified, e.g., by assert, using the conditions along the path. If the
propositional formula does not reduce to true or false, bddsimp produces a set of subgoals
to be proved. In the present case, each of these goals can be discharged by assert. The
compound proof step appearing on lines 4 through 6 of the proof accomplishes the case-
splitting task.

correctness :

|-------

[1] (stall(t!1))

{2} aluop(opcode(t!1),

IF src1(t!1) = dstnd(t!1) & NOT stalld(t!1)

THEN aluop(opcoded(t!1), opreg1(t!1), opreg2(t!1))

ELSIF src1(t!1) = dstndd(t!1) & NOT stalldd(t!1)

THEN wbreg(t!1)

ELSE regfile(t!1)(src1(t!1)) ENDIF,

....

ENDIF)

= aluop(opcode(t!1),

IF stalld(t!1) THEN IF stalldd(t!1) THEN regfile(t!1)

ELSE regfile(t!1) WITH [(dstndd(t!1)) := wbreg(t!1)]

ENDIF

ELSE ...

ENDIF(src1(t!1)),

IF stalld(t!1) THEN IF stalldd(t!1) THEN regfile(t!1)

ELSE ... ENDIF

ELSE ...

ENDIF(src2(t!1)))

We have found that the sequence of steps shown above works successfully for proving
safety properties of finite state machines that relate states of the machine that are finite
distance apart. If the strategy does not succeed, the most likely cause is that either the
property is not true or that a certain property about some of the functions in the specifi-
cation unknown to the prover needs to be proved as a lemma. In either case, the unproven
goals remaining at the end of the proof provide information about the probable cause.

77

Two Hardware Examples Using PVS

5.2 An N-bit Ripple-Carry Adder

The second example we consider is the verification of a parametrized N-bit ripple-carry
adder circuit. The theory adder, shown in Figure 14, specifies a ripple-carry adder circuit
and a statement of correctness for the circuit.

adder[N: posnat] : THEORY

BEGIN

IMPORTING bv[N], full_adder

n: VAR below[N]

bv, bv1, bv2: VAR bvec

cin: VAR bool

nth_cin(n, cin, bv1, bv2): RECURSIVE bool =

IF n = 0 THEN cin

ELSE fa_cout(nth_cin(n - 1, cin, bv1, bv2), bv1(n - 1), bv2(n - 1))

ENDIF

MEASURE n

bv_sum(cin, bv1, bv2): bvec =

(LAMBDA n: fa_sum(bv1(n), bv2(n), nth_cin(n, cin, bv1, bv2)))

bv_cout(n, cin, bv1, bv2): bool =

fa_cout(nth_cin(n, cin, bv1, bv2), bv1(n), bv2(n))

adder_correct_n: LEMMA

bvec2nat_rec(n, bv1) + bvec2nat_rec(n, bv2) + bool2bit(cin)

= exp2(n + 1) * bool2bit(bv_cout(n, cin, bv1, bv2))

+ bvec2nat_rec(n, bv_sum(cin, bv1, bv2))

adder_correct: THEOREM

bvec2nat(bv1) + bvec2nat(bv2) + bool2bit(cin)

= exp2(N) * bool2bit(bv_cout(N - 1, cin, bv1, bv2))

+ bvec2nat(bv_sum(cin, bv1, bv2))

END adder

Figure 14: Adder Specification

The theory is parameterized with respect to the length of the bit-vectors. It imports
the theories (not shown here) full adder, which contains a specification of a full adder
circuit (fa cout and fa sum), and bv, which specifies the bit-vector type (bvec[N]) and
functions. An N-bit bit-vector is represented as an array, i.e., a function, from the the type
below[N], a subtype of nat ranging from 0 through N-1, to bool; the index 0 denotes the
least significant bit. Note that the parameter N is constrained to be a posnat since we do
not permit bit vectors of length 0. The adder theory contains several declarations including
a set of initial variable declarations.

The carry bit that ripples through the full adder is specified recursively by means of
the function nth cin. The function bv cout and bv sum define the carry output and the
bit-vector sum of the adder, respectively. The theorem adder correct expresses the con-
ventional correctness statement of an adder circuit using bvec2nat, which returns the nat-
ural number equivalent of an N-bit bit-vector. Note that variables that are left free in
a formula are assumed to be universally quantified. We state and prove a more general
lemma adder correct rec of which adder correct is an instance. For a given n < N,
bvec2nat rec returns the natural number equivalent of the least significant n-bits of a
given bit-vector and bool2bit converts the boolean constants TRUE and FALSE into the
natural numbers 1 and 0, respectively.

Typechecking

The typechecker generates several TCCs (shown in Figure 15 below) for adder.

78

Two Hardware Examples Using PVS

% Subtype TCC generated (line 13) for n - 1

% unproved

nth_cin_TCC1: OBLIGATION (FORALL n: NOT n = 0 IMPLIES n - 1 >= 0 AND n - 1 < N)

% Subtype TCC generated (line 31) for N - 1

% unproved

adder_correct_TCC1: OBLIGATION N - 1 >= 0

Figure 15: TCCs for Theory adder

The first TCC is due to the fact that the first argument to nth cin is of type below[N],
but the type of the argument (n-1) in the recursive call to nth cin is integer, since below[N]
is not closed under subtraction. Note that the TCC includes the condition NOT n = 0, which
holds in the branch of the IF-THEN-ELSE in which the expression n - 1 occurs. A TCC

identical to this one is generated for each of the two other occurrences of the expression n-1

because bv1 and bv2 also expect arguments of type below[N]. These TCCs are not retained
because they are subsumed by the first one.

The second TCC is generated by the expression N-1 in the definition of the theo-
rem adder correct because the first argument to bv cout is expected to be the subtype
below[N].

There is yet another TCC that is internally generated by PVS but is not even included in
the TCCs file because it can be discharged trivially by the typechecker, which calls the prover
to perform simple normalizations of expressions. This TCC is generated to ensure that the
recursive definition of nth cin terminates. PVS does not directly support partial functions,
although its powerful subtyping mechanism allows PVS to express many operations that are
traditionally regarded as partial. As discussed earlier, the measure function is used to show
that recursive definitions are total by requiring the measure to decrease with each recursive
call. For the definition of nth cin, this entails showing n-1 < n, which the typechecker
trivially deduces.

In the present case, all the remaining TCCs are simple, and in fact can be discharged
automatically by using the typecheck-prove command, which attempts to prove all TCCs
that have been generated using a predefined proof strategy called tcc.

Proof of Adder correct n

The proof of the lemma uses the same core strategy as in the microprocessor proof except for
the quantifier elimination step. Since the specification is recursive in the length of the bit-
vector, we need to perform induction on the variable n. As we’ve seen in earlier proofs, the
user invokes an inductive proof in PVS by means of the command induct with the variable
to induct on (n) and the induction scheme to be used (below induction[N]) as arguments.
The induction used in this case is defined in the PVS prelude and is parameterized, as is
the type below[N], with respect to the upper limit of the subrange.

This command generates two subgoals: the subgoal corresponding to the base case,
which is the first goal presented to prove, is shown in Figure 16.

The goal corresponding to the inductive case is shown below.
The base and the inductive steps can be proved automatically using essentially the same

strategy used in the microprocessor proof. A complete proof of adder correct n is shown
in Figure 17.

79

Two Hardware Examples Using PVS

adder_correct.1 :

|-------

1 (N > 0

IMPLIES

(FORALL

(bv1: bvec[N], bv2: bvec[N], cin: bool):

bvec2nat_rec(0, bv1) + bvec2nat_rec(0, bv2)

+ bool2bit(cin)

= exp2(0 + 1) * bool2bit(bv_cout(0, cin, bv1, bv2))

+ bvec2nat_rec(0, bv_sum(cin, bv1, bv2))))

Figure 16: Base Step

The remaining siblings are:

adder_correct_n.2 :

|-------

{1} (FORALL (r: below[N]):

r < N - 1

AND (FORALL (bv1, bv2: bvec[N]), (cin: bool):

bvec2nat_rec(r, bv1) + bvec2nat_rec(r, bv2)

+ bool2bit(cin)

= exp2(r + 1) * bool2bit(bv_cout(r, cin, bv1, bv2))

+ bvec2nat_rec(r, bv_sum(cin, bv1, bv2)))

IMPLIES (FORALL (bv1, bv2: bvec[N]), (cin: bool):

bvec2nat_rec(r + 1, bv1)

+ bvec2nat_rec(r + 1, bv2)

+ bool2bit(cin)

= exp2(r + 1 + 1)

* bool2bit(bv_cout(r + 1, cin, bv1, bv2))

+

bvec2nat_rec(r + 1,

bv_sum(cin, bv1, bv2))))

Figure 17: Inductive Step

1: (spread (induct ‘‘n’’ 1 ‘‘below_induction[N]’’)

2: ((then* (skosimp*)

3: (auto-rewrite-defs :always? t)

4: (do-rewrite)

5: (repeat (lift-if))

6: (apply (then* (bddsimp)(assert))))

7: (then* (skosimp*)

8: (inst?)

9: (auto-rewrite-defs :always? t)

10: (do-rewrite)

11: (repeat (lift-if))

12: (apply (then* (bddsimp)(assert))))))

The strategy spread used on line 1 applies the first proof step (induct) and then applies
the ith element of the list of commands that follow to the ith subgoal resulting from the
application of the first prof step. Thus, the proof steps listed on lines 2 through 6 prove
the base case of induction, the steps on lines 7 through 12 prove the inductive case, and the
proof step on line 13 takes care of the third TCC subgoal.

We consider the base case first. The induct command has already instantiated the
variable n to 0. The remaining variables are skolemized away by skosimp*. To unfold the
definitions in the resulting goal, we use the command auto-rewrite-defs, which makes
rewrite rules out of the definition of every function either directly or indirectly used in the
given formula. The rest of the proof proceeds exactly as for the microprocessor.

The proof of the inductive step follows exactly the same pattern except that we need
to instantiate the induction hypothesis and use it in the process of unfolding and case-
analysis. PVS provides a command inst? that tries to find instantiations for existential-
strength variables in a formula by searching for possible matches between terms involving

80

Exercises Using PVS

these variables with ground terms inside formulas in the rest of the sequent. This command
finds the desired instantiations in the present case. The rest of the proof proceeds as in the
basis case.

Since the inductive proof pattern shown above is applicable to any iteratively gen-
erated hardware designs, we have packaged it into a general proof strategy called
name-induct-and-bddrewrite. The strategy is parameterized with respect to an induction
scheme and the set of rewrite rules to be used for unfolding. We have used the strategy to
prove an N-bit ALU [Can94] that executes 12 microoperations by cascading N 1-bit ALU
slices.

6 Exercises

Problem 1 Based on the discussion of the specification of stacks, try to specify a PVS
theory formalizing queues. Can the PVS abstract datatype facility be used for specifying
queues?

Problem 2 Specify binary trees with value type T as a parametric abstract datatype in PVS.

Problem 3 Specify a PVS theory formalizing ordered binary trees with respect to a type
parameter T and a given total-ordering relation, i.e., define a predicate ordered? that checks
if a given binary tree is ordered with respect to the given total ordering.

Problem 4 Prove the stack axioms for the definitions stated in newstacks.

Problem 5 Prove the theorems in the theory half (Page 67).

Problem 6 Define the operation for carrying out the ordered insertion of a value into an
ordered binary tree. Prove that the insertion operator applied to an ordered binary tree
returns an ordered binary tree.

81

PVS Reference

Part III

PVS Reference

82

PVS Files PVS Reference

Reference to PVS Version 2.0α+

PVS Files

PVS Files

foo.pvs Specification file (contains theories)
foo.bin Binary form of the typed specification file
foo.prf Saved proofs for foo.pvs
.pvscontext Context information
foo-alltt.tex Alltt-printed version of foo
foo.tex LATEX-printed version of foo
pvs-files.tex LATEX file generated for testing Alltt

and LATEX-printed files

LaTeX Substitution Files

LATEX Substitutions for file foo.pvs may come from any of the following files.

File name Location

foo.sub the directory of the current context
pvs-tex.sub the directory of the current context
pvs-tex.sub user’s home directory
pvs-tex.sub the main PVS directory

Examples of substitution entries—numbers refer to the number of arguments; thus the
third entry translates f2[3,G] (to Gf3) but not f2[int], and the last entry translates,
e.g., f4(G)(1,n) (to

∑n
i=1G(i, 1)). Length is an estimation of the size of the translation,

ignoring the size of the arguments.

Identifier Type Length Substitution

THEORY key 9 {\large\bf Theory}

f1 id 3 {\rm bar}

f2 id[2] 2 {#2_{#1}^{f}}

f3 2 2 {#1^#2}

f4 (1 2) 3 {\sum_{i=#2}^{#3}#1(i,#2)}

83

PVS Language Summary PVS Reference

PVS Language Summary

Theories

function_properties [D, R: TYPE]: THEORY

BEGIN

f, g: VAR [D -> R]

x, x1, x2: VAR D

y: VAR R

injective?(f): bool =

(FORALL x1, x2: (f(x1) = f(x2) => (x1 = x2)))

surjective?(f): bool =

(FORALL y: (EXISTS x: f(x) = y))

END function_properties

finite[t: TYPE]: THEORY

BEGIN

IMPORTING function_properties

is_finite_type: bool =

(EXISTS (n:nat), (f:[upto[n] -> t]): surjective?(f))

is_finite_type_alt: LEMMA

is_finite_type IFF

(EXISTS (n:nat), (g:[t -> upto[n]]): injective?(g))

END finite

best_choice[t: TYPE, meas: TYPE FROM real]: THEORY

BEGIN

ASSUMING

IMPORTING finite[t]

finite: ASSUMPTION is_finite_type[t]

ENDASSUMING

best: [[t -> meas], setof[t] -> t]

f: VAR [t -> meas]

s: VAR setof[t]

best_ax: AXIOM

nonempty?(s) => member(best(f, s), s)

AND (FORALL (x: t): member(x, s) => f(x) <= f(best(f, s)))

END best_choice

84

PVS Language Summary PVS Reference

Lexical Rules

Comments start with % and go to the end of the line

Identifiers are composed of letters, digits, question mark,and underscores; they must begin
with a letter and are case-sensitive.

Numbers are composed of digits—no floating point numbers.

Strings are enclosed in double quotes "astring"

Reserved Words

Reserved words are not case sensitive.
ALL CONJECTURE FACT LAW SUBLEMMA
AND CONTAINING FALSE LEMMA SUBTYPE OF
ANDTHEN CONVERSION FORALL LET SUBTYPES
ARRAY COROLLARY FORMULA LIBRARY TABLE
ASSUMING DATATYPE FROM MEASURE THEN
ASSUMPTION ELSE FUNCTION NONEMPTY TYPE THEOREM
AXIOM ELSIF HAS TYPE NOT THEORY
BEGIN END IF O TRUE
BUT ENDASSUMING IFF OBLIGATION TYPE
BY ENDCASES IMPLIES OF TYPE+
CASES ENDCOND IMPORTING OR VAR
CHALLENGE ENDIF IN ORELSE WHEN
CLAIM ENDTABLE INDUCTIVE POSTULATE WHERE
CLOSURE EXISTS JUDGEMENT PROPOSITION WITH
COND EXPORTING LAMBDA RECURSIVE XOR

Special Symbols

& () * + ,

- -> . / /= :

:= ; < <= <=> =

=> > >= | []

[# #] { } (# #)

\/ /\ ~ == [] <>

^ @ || |[]| |->

[| |] (: :) ! [||]

@@ ## ** ++ // ^^

|- |= <| |> << >>

<<= >>= #

Precedence Table

85

PVS Language Summary PVS Reference

Operators Associativity

FORALL, EXISTS, LAMBDA, IN None

| Left

|-, |= Right

IFF, <=> Right

IMPLIES, =>, WHEN Right

OR, \/, XOR, ORELSE Right

AND, &, &&, /\, ANDTHEN Right

NOT, ~ None

=, /=, ==, <, <=, >, >=, <<, >>, <<=, >>=, <|, |> Left

WITH Left

WHERE Left

@, # Left

@@, ##, || Left

+, -, ++, Left

*, /, **, // Left

- None

o Left

:, ::, HAS TYPE Left

[], <> None

^, ^^ Left

86

PVS Language Summary PVS Reference

Type Declarations

• Uninterpreted types

◦ foo: TYPE

◦ bar: NONEMPTY_TYPE % same as TYPE+

◦ some_nums: NONEMPTY_TYPE FROM number

• Subtypes

◦ nat_to_10: TYPE = {x:nat | x <= 10}

◦ posint: TYPE = {x:integer | x > 0} CONTAINING 1

◦ ptype: TYPE = (pred?) % same as {x | pred?(x)}

◦ rtype: TYPE = {x, y: nat | x < y} % subtype of [nat, nat]

• Function types

◦ intf: TYPE = FUNCTION[int, int -> int]

◦ altf: TYPE = [int, int -> int] % same as above

◦ inta: TYPE = ARRAY[int,int -> int] % same as above

• Tuple Types

◦ tuptype: TYPE = [int, bool, [int -> int]]

• Record types

◦ stack: TYPE = [# pointer: nat,

astack: [nat -> t] #]

• Dependent Types

◦ pfun: TYPE = [# dom: predicate[t1], pfn:[(dom)->t2] #]

◦ date: TYPE = [y,m:nat, {d:nat | d <= days(m,y)}]

◦ tmod: TYPE = [n,m:int -> {x:nat | x < m}]

• Enumeration types

◦ color: TYPE = {red, green, blue}

87

PVS Language Summary PVS Reference

• Datatypes

◦ list[t:TYPE] : DATATYPE

BEGIN

null: null?

cons (car: t, cdr :list) :cons?

END list

◦ expression: DATATYPE WITH SUBTYPES term, typ

BEGIN

base_type(n:nat): base_type? : typ

funtype(dom: typ, ran: typ): funtype? : typ

variable(n:nat): variable? : term

number(num:nat): number? : term

lam(v: (variable?), ty: typ, ex: term): lam? : term

app(op: term, arg: term): app? : term

END expression

88

PVS Language Summary PVS Reference

Libraries, Importings, Exportings, and Theory Abbreviations

• fsets: LIBRARY = "/homes/pvs/lib/finite_sets"

• IMPORTING orderings[int], set[foo[nat]],

fsets@finite_sets[nat]

• EXPORTING foo, bar WITH set[foo]

• pset: THEORY = sets[list[nat]]

Constants and Recursive Definitions

• some_int: int

• max: int = 10

• abs: [int -> nat] =

(LAMBDA x: IF x < 0 THEN -x ELSE x ENDIF)

• abs(x:int): nat = IF x < 0 THEN -x ELSE x ENDIF

• sum(f,x,y): int % f,x,y prev declared VAR

• sum(f,(x,y:int)): int % f prev declared VAR

• fac(n): RECURSIVE nat =

(IF n = 0 THEN 1 ELSE n*fac(n-1) ENDIF)

MEASURE (LAMBDA n: n)

• length(l:list): RECURSIVE nat =

CASES l OF

null: 0,

cons(x, y): length(y) + 1

ENDCASES

MEASURE l BY << % Subterm measure

Variable Declarations

• x, y, z: VAR int

• f: VAR [int -> [int -> int]]

Formula Declarations

• transitive: AXIOM x < y AND y < z IMPLIES x < z

• nonzero_fac: THEOREM fac(n) /= 0

• poset: ASSUMPTION poset?(T,<=) % Only in ASSUMINGs

Judgements

89

PVS Language Summary PVS Reference

• JUDGEMENT {x :int | x > 10} SUBTYPE_OF posint

• JUDGEMENT c HAS_TYPE (even?)

• JUDGEMENT +, -, * HAS_TYPE [(even?), (even?) -> (even?)]

Conversions

• C: [int -> bool] = (LAMBDA (i:int): i=0)

CONVERSION C

foo: FORMULA d + 1 % ≡ foo: FORMULA C(d + 1)

• state: TYPE

K: [int -> [state -> int]] = (LAMBDA i: (LAMBDA s: i))

f: [[state -> int] -> [state -> int]]

x: [state -> int]

B: [[state -> int] -> bool] = (LAMBDA si: FORALL i: si(i))

CONVERSION K, B

bar: LEMMA f(x+1) % ≡ bar: LEMMA B(f(LAMBDA s: x(s)+1))

90

PVS Language Summary PVS Reference

Expressions

• Equality — (=, /=)
Defined for any type; both sides must be the same type.
With boolean, = is treated as IFF.

◦ x * y = 4

◦ true /= 1 % Illegal

• Arithmetic — (+, -, *, /, <, <=, >, >=, 0, 1, . . .)

◦ ((x + 1) * x) / 2 < x * x

• Lists and Strings

◦ (: 1, 2 :) % ≡ cons(1, cons(2, null))

◦ "A string" % A finite sequence of characters

• Logical — (true, false, AND, &, OR, IMPLIES, =>, WHEN, NOT, IFF, <=>, FORALL, ALL,
EXISTS, SOME)

◦ (FORALL e: (EXISTS d: abs(f(x) - f(y)) < d)

IMPLIES abs(x - y) < e)

• IF-THEN-ELSE — The THEN and ELSE parts must have compatible types.

◦ IF x = 0 THEN 1 ELSIF y = 0 THEN 2 ELSE y/x ENDIF

• CASES — Pattern matching on datatypes.

◦ CASES x OF

cons(x,y): append(reverse(y), cons(x, null))

ELSE null

ENDCASES

• COND — generates coverage and disjointness TCCs

◦ COND m = n -> m,

m > n -> gcd(m-n, n),

m < n -> gcd(m, n-m)

91

PVS Language Summary PVS Reference

ENDCOND

◦ COND m = n -> m,

m > n -> gcd(m-n, n),

ELSE -> gcd(m, n-m)

ENDCOND % Same as above, but no coverage TCC

• Function application, lambda-abstraction & function update

◦ f(1,2)(0)

◦ (lambda x: x + 1)

◦ f WITH [(0) := 1, (1) := 0]

◦ foo ! (x:int): e % ≡ foo(LAMBDA (x: int): e)

• Set expressions

◦ {x: int | x < 10} % same as (LAMBDA (x: int): x < 10)

• Record construction, field selection & record update

◦ (# pointer := 1, astack := (LAMBDA x: 0) #)

◦ astack(r) % r.astack NOT allowed

◦ r WITH [pointer := 2, (astack)(1) := 1]

92

PVS Language Summary PVS Reference

• Tuple construction, projection, and update

◦ (1, true, (LAMBDA (x:int) x + 37))

◦ proj_3(tup)

◦ tup WITH [2 := false]

• LET & WHERE

◦ LET x = 2, y:nat = x*x IN f(x,y) % ≡ f(2,4)

◦ f(x,y) WHERE x = 2, y:nat = x*x % same

◦ LET (x, y, z) = t IN x + y * z % same as next line

◦ LET x=PROJ_1(t), y=PROJ_2(t), z=PROJ_3(t) IN x + y * z

• Coercion — Coercion indicates the expected type to the typechecker to resolve ambiguity.

◦ a + b:natural

◦ (LAMBDA n -> nat: n - m) % LAMBDA coercion

• Names — If foo is declared in theory bar, then the following are allowable references (the
first two may be ambiguous).

◦ foo

◦ foo[int]

◦ bar[int].foo

93

PVS Emacs Commands PVS Reference

PVS Emacs Commands

The commands which appear below are given with their abbreviations and keybindings, if
any. For example, the command Prove with aliases pr and C-c p indicates that the parse
command can be invoked by the Emacs extended commands M-x prove or M-x pr, or the
key binding C-c p.

Entering and Exiting PVS

To enter PVS just cd to a working directory (PVS context) and type pvs.

suspend-pvs C-x C-z

exit-pvs C-x C-c

Getting Help

help-pvs C-c h

help-pvs-language C-c C-h l

help-pvs-prover C-c C-h p

help-pvs-prover-command C-c C-h c

help-pvs-prover-strategy C-c C-h s

help-pvs-prover-emacs C-c C-h e

Editing PVS Files

forward-theory M-}

backward-theory M-{

find-unbalanced-pvs C-c]

comment-region C-c ;

Parsing and Typechecking

parse M-x pa

typecheck M-x tc, C-c C-t

typecheck-importchain M-x tci

typecheck-prove M-x tcp

typecheck-prove-importchain M-x tcpi

Typecheck Information

show-theory-warnings
show-pvs-file-warnings
show-theory-messages
show-pvs-file-messages

94

PVS Emacs Commands PVS Reference

Prover Invocation Commands

prove M-x pr, C-c p

x-prove M-x xpr, C-c C-p x

step-proof M-x prs, C-c C-p s

x-step-proof M-x xsp, C-c C-p X

redo-proof M-x prr, C-c C-p r

prove-theory M-x prt, C-c C-p t

prove-pvs-file M-x prf, C-c C-p f

prove-importchain M-x pri, C-c C-p i

prove-proofchain M-x prp, C-c C-p p

95

PVS Emacs Commands PVS Reference

Proof Editing Commands

edit-proof, show-proof
install-proof C-c C-i

revert-proof
remove-proof
show-proof-file
show-orphaned-proofs
show-proofs-theory
show-proofs-pvs-file
show-proofs-importchain
install-pvs-proof-file
load-pvs-strategies
set-print-depth
set-print-length
set-rewrite-depth
set-rewrite-length
toggle-proof-prettyprinting

Proof Information Commands

show-current-proof
explain-tcc
show-last-proof
ancestry
siblings
show-hidden-formulas
show-auto-rewrites
show-expanded-sequent
show-skolem-constants

96

PVS Emacs Commands PVS Reference

Adding and Modifying Declarations

add-declaration
modify-declaration

Prettyprinting Commands

prettyprint-theory M-x ppt, C-c C-q t

prettyprint-pvs-file M-x ppf, C-c C-q f

prettyprint-declaration M-x ppd, C-c C-q d, C-M-q

prettyprint-region M-x ppr, C-c C-q r, C-M-\

Viewing TCCs

prettyprint-expanded M-x ppe, C-c C-q e

show-tccs M-x tccs, C-c C-q s

PVS File and Theory Commands

find-pvs-file M-x ff, C-c C-f

find-theory M-x ft

view-prelude-file M-x vpf

view-prelude-theory M-x vpt

view-library-file M-x vlf

view-library-theory M-x vlt

new-pvs-file M-x nf

new-theory M-x nt

import-pvs-file M-x imf

import-theory M-x imt

delete-pvs-file M-x df

delete-theory M-x dt

save-pvs-buffer C-x C-s

save-pvs-file C-x C-s

save-some-pvs-files M-x ssf

smail-pvs-files
rmail-pvs-files
dump-pvs-files
undump-pvs-files
edit-pvs-dump-file

Printing Commands

pvs-print-buffer
pvs-print-region
print-theory M-x ptt

print-pvs-file M-x ptf

print-importchain M-x pti

97

PVS Emacs Commands PVS Reference

alltt-theory M-x alt, C-c C-a t

alltt-pvs-file M-x alf, C-c C-a f

alltt-importchain M-x ali, C-c C-a i

alltt-proof M-x alp, C-c C-a p

latex-theory M-x ltt, C-c C-l t

latex-pvs-file M-x ltf, C-c C-l f

latex-importchain M-x lti, C-c C-l i

latex-proof M-x ltp, C-c C-l p

latex-theory-view M-x ltv, C-c C-l v

latex-proof-view M-x lpv, C-c C-l P

latex-set-linelength M-x lts, C-c C-l s

Display Commands

x-theory-hierarchy
x-show-proof
x-show-current-proof
x-prover-commands

Context Commands

list-pvs-files M-x lf

list-theories M-x lt

change-context M-x cc

save-context M-x sc

pvs-remove-bin-files
pvs-dont-write-bin-files
pvs-do-write-bin-files
context-path M-x cp

Library Commands

load-prelude-library
remove-prelude-library

Browsing Commands

show-declaration M-.

find-declaration M-,

whereis-declaration-used M-;

whereis-identifier-used C-M-;

list-declarations M-:

goto-declaration M-’

98

PVS Emacs Commands PVS Reference

Status Commands

status-theory M-x stt, C-c C-s t

status-pvs-file M-x stf, C-c C-s f

status-importchain M-x sti, C-c C-s i

status-importbychain M-x stb, C-c C-s b

status-proof M-x sp, C-c s p

status-proof-theory M-x spt

status-proof-pvs-file M-x spf

status-proof-importchain M-x spi

status-proofchain M-x spc

status-proofchain-theory M-x spct

status-proofchain-pvs-file M-x spcf

status-proofchain-importchain M-x spci

Environment Commands

whereis-pvs
pvs-version
pvs-mode
pvs-log
status-display
pvs-status
remove-popup-buffer C-z 1

pvs
pvs-load-patches
pvs-interrupt-subjob C-c C-c

reset-pvs C-z z

99

PVS Prover Commands PVS Reference

PVS Prover Commands

Prover commands are entered in the *pvs* buffer at the Rule? prompt. Commands are
interpreted by Lisp, so must be surrounded by parentheses, and arguments are separated
by whitespace (Space, Tab, or Return). Some commands require PVS names or expres-
sions; these must be surrounded by double quotes ("). Return enters the command, unless
parentheses or strings are unbalanced. The arguments are shown in emphasized font. Op-
tional arguments follow the keyword &opt and may be omitted. They may be provided in
the order listed, or followed by a keyword whose name is derived form the argument name
preceded by a colon, e.g., (expand "foo" :beta-reduce t). An &rest keyword indicates
that one or more of the following argument may be provided, and may also be given in
keyword form.

Help

(help &opt name[*])

Control

(fail)

(postpone)

(quit)

(rewrite-msg-off)

(rewrite-msg-on)

(skip)

(skip-msg string &opt force-printing?)

(undo &opt to[1])

Structural Rules

(copy fnum)

(delete &rest fnums)

(hide &rest fnums)

(reveal &rest fnums)

Propositional Rules

(bddsimp &opt fnums[*] dynamic-ordering?)

(case &rest exprs)

(case* &rest exprs)

(flatten &rest fnums[*])

(iff &rest fnums[*])

(lift-if &rest fnums updates?[t])

(prop)

(propax)

(split &opt fnum[*])

(merge-fnums fnums)

100

PVS Prover Commands PVS Reference

Quantifier Rules

(detuple-boundvars &opt fnums[*] singles?)

(generalize term var &opt type fnums[*] subterms-only?[t])

(generalize-skolem-constants &opt fnums[*])

(inst fnum &rest terms)

(instantiate fnum terms &opt copy?)

(inst-cp fnum &rest terms)

(inst? &opt fnums[*] subst where[*] copy? if-match polarity?)

(skolem fnum constants)

(skolem! &opt fnum[*] keep-underscore?)

(skolem-typepred &opt fnum[*])

(skosimp &opt fnum[*] preds?)

(skosimp* &opt preds?)

Equality Rules

(beta &opt fnums[*] rewrite-flag)

(case-replace expr)

(name name expr)

(name-replace name expr &opt hide?[T])

(name-replace* name-and-exprs &opt hide?[T])

(replace fnum &opt fnums[*] dir[LR] hide? actuals?)

(replace* &rest fnums)

(same-name name1 name2 &opt type)

Definition and Lemma Rules

(expand name &opt fnum[*] occurrence if-simplifies assert?)

(expand* &rest names)

(forward-chain name-or-fnum)

(lemma name &opt subst)

(rewrite name &opt fnums[*] subst target-fnums[*] dir[LR] order[IN])

(rewrite-lemma lemma subst &opt fnums[*] dir[LR])

(rewrite-with-fnum fnum &opt subst fnums[*] dir[LR])

(use lemma &opt subst if-match[best])

(use* &rest names)

Extensionality Rules

(apply-eta term &opt type)

(apply-extensionality &opt fnum[+] keep? hide?)

(decompose-equality &opt fnum[*] hide?[t])

(eta type)

(extensionality type)

(replace-eta term &opt type keep?)

(replace-extensionality expr1 expr2 &opt expected keep?)

101

PVS Prover Commands PVS Reference

Induction Rules

(induct var &opt fnum[1] name)

(induct-and-rewrite var &opt fnum[1] &rest rewrites)

(induct-and-rewrite! var &opt fnum[1] &rest rewrites)

(induct-and-simplify var &opt fnum[1] name defs[T] if-match[best] theories

rewrites exclude)

(measure-induct measure vars &opt fnum[1] order)

(measure-induct+ measure vars &opt fnum[1] order)

(measure-induct-and-simplify measure vars &opt fnum[1] order expand

defs[T] if-match[best] theories rewrites exclude)

(name-induct-and-rewrite var &opt fnum[1] name &rest rewrites)

(rule-induct rel &opt fnum[+] name)

Decision Procedure and Rewriting Rules

(assert &opt fnums[*] rewrite-flag flush? linear? cases-rewrite?

type-constraints?[t])

(bash &opt if-match[T] updates?[T] polarity?)

(both-sides op term &opt fnum[1])

(do-rewrite &opt fnums[*] rewrite-flag flush? linear? cases-rewrite?

type-constraints?[t])

(grind &opt defs[!] theories rewrites exclude if-match[T] updates?[T]

polarity?)

(ground)

(record &opt fnums[*] rewrite-flag flush? linear? cases-rewrite?

type-constraints[t])

(reduce &opt if-match[T] updates?[T] polarity?)

(simplify &opt fnums[*] record? rewrite? rewrite-flag flush? linear?

cases-rewrite? type-constraints?[t])

(smash &opt updates?[T])

Installation of Rewrite Rules

(auto-rewrite &rest names)

(auto-rewrite! &rest names)

(auto-rewrite!! &rest names)

(auto-rewrite-defs &opt explicit? always? exclude-theories)

(auto-rewrite-explicit &opt always?)

(auto-rewrite-theories &rest theories)

(auto-rewrite-theory &rest names)

(install-rewrites &opt defs theories rewrites exclude-theories exclude)

Removing Installed Rewrite Rules

(stop-rewrite &rest names)

102

PVS Prover Commands PVS Reference

(stop-rewrite-theory &rest names)

Tracking Rewrite Rules

(trace &rest names)

(track-rewrite &rest names)

(untrace &rest names)

(untrack-rewrite &rest names)

103

PVS Prover Commands PVS Reference

Miscellaneous Rules

(apply strategy &opt comment)

(model-check &opt dynamic-ordering?[T] cases-rewrite?[T])

(musimp &opt fnums[*] dynamic-ordering?[nil])

(typepred &rest exprs)

(typepred! exprs &opt all?)

Strategy Constructors

(branch step steplist)

(else step1 step2)

(if condition step1 step2)

(let ((var1 expr1)· · · (varn exprn)) step)

(query*)

(quote step)

(repeat step)

(repeat* step)

(rerun &opt proof)

(spread step steplist)

(spread! step steplist)

(spread@ step steplist)

(then &rest steps)

(then@ &rest steps)

(time step)

(try step1 step2 step3)

(try-branch step1 steplist step2)

104

PVS Prover Emacs Shortcuts PVS Reference

Prover Emacs Shortcuts

These commands are only available when a proof is in progress, and the *pvs* buffer is
current.

Prover Emacs Help TAB h

Prover Command Help TAB H

Any Command TAB TAB

apply-extensionality TAB E

assert TAB a

auto-rewrite TAB A

auto-rewrite-theory TAB C-a

bddsimp TAB B

beta TAB b

case TAB c

case-replace TAB C

copy TAB 2

decompose-equality TAB =

delete TAB d

do-rewrite TAB D

expand TAB e

extensionality TAB x

flatten TAB f

grind TAB G

ground TAB g

hide TAB C-h

iff TAB F

induct TAB I

induct-and-simplify TAB C-s

inst TAB i

inst? TAB ?

lemma TAB L

lift-if TAB l

model-check TAB M

musimp TAB m

name TAB n

name-replace TAB N

postpone TAB P

prop TAB p

quit TAB C-q

replace TAB r

replace-eta TAB 8

rewrite TAB R

skolem! TAB !

skosimp TAB S

skosimp* TAB *

105

PVS Prover Emacs Shortcuts PVS Reference

split TAB s

tcc TAB T

then TAB C-t

typepred TAB t

undo TAB u

One Proof Step TAB 1

Many Proof Steps TAB @

Undo One Proof Step TAB U

Undo Many Proof Steps TAB C-u

Skip Proof Step TAB #

Insert Quotes TAB ’

Wrap with Parens TAB C-j

106

References

References

[AJ90] Heather Alexander and Val Jones. Software Design and Prototyping Using
me too. Prentice Hall International, Hemel Hempstead, UK, 1990.

[ALW93] Mark D. Aagard, Miriam E. Leeser, and Phillip J. Windley. Toward a super
duper hardware tactic. In Proceedings of the HOL User’s Group Workshop,
pages 401–414, 1993.

[BCM+90] J. R. Burch, E. M. Clarke, K. L McMillan, D. L. Dill, and L. J. Hwang.
Symbolic model checking: 1020 states and beyond. In 5th Annual IEEE Sym-
posium on Logic in Computer Science, pages 428–439, Philadelphia, PA, June
1990. IEEE Computer Society.

[BJ93] Ricky W. Butler and Sally C. Johnson. Formal methods for life-critical soft-
ware. In Computing in Aerospace Conference, pages 319–329, San Diego, CA,
October 1993.

[BM79] R. S. Boyer and J S. Moore. A Computational Logic. Academic Press, New
York, NY, 1979.

[BM88] R. S. Boyer and J S. Moore. A Computational Logic Handbook. Academic
Press, New York, NY, 1988.

[But93] Ricky W. Butler. An elementary tutorial on formal specification and verifi-
cation using PVS 2. NASA Technical Memorandum 108991, NASA Langley
Research Center, Hampton, VA, June 1993. Revised June 1995. Available,
with PVS specification files, at http://atb-www.larc.nasa.gov/ftp/larc/
PVS-tutorial; use only files marked “revised.”.

[Can94] F. J. Cantu. Verifying an n-bit arithmetic logic unit. Blue book note 935,
University of Edinburgh, June 1994.

[CH85] T. Coquand and G. P. Huet. Constructions: A higher order proof system for
mechanizing mathematics. In Proceedings of EUROCAL 85, Linz (Austria),
Berlin, 1985. Springer-Verlag.

[Const86] R. L. Constable, et al . Implementing Mathematics with the Nuprl. Prentice-
Hall, New Jersey, 1986.

[Cou93] Costas Courcoubetis, editor. Computer-Aided Verification, CAV ’93, volume
697 of Lecture Notes in Computer Science, Elounda, Greece, June/July 1993.
Springer-Verlag.

[CRSS94] D. Cyrluk, S. Rajan, N. Shankar, and M. K. Srivas. Effective theorem proving
for hardware verification. In Kumar and Kropf [KK94], pages 203–222.

[dB80] N. G. de Bruijn. A survey of the project Automath. In To H. B. Curry:
Essays on Combinatory Logic, Lambda Calculus and Formalism, pages 589–
606. Academic Press, 1980.

107

References

[EGMS79] B. Elspas, M. Green, M. Moriconi, and R. Shostak. A JOVIAL verifier.
Technical report, Computer Science Laboratory, SRI International, January
1979.

[FGT91] W. M. Farmer, J. D. Guttman, and F. J. Thayer. IMPS: An interactive
mathematical proof system. Technical Report M90-19, Mitre Corporation,
1991.

[FTCS-95] Fault Tolerant Computing Symposium 25: Highlights from 25 Years,
Pasadena, CA, June 1995. IEEE Computer Society, IEEE Computer Soci-
ety.

[GHW85] John V. Guttag, James J. Horning, and Jeannette M. Wing. The Larch family
of specification languages. IEEE Software, 2(5):24–36, September 1985.

[GMW79] M. Gordon, R. Milner, and C. Wadsworth. Edinburgh LCF: A Mechanized
Logic of Computation, volume 78 of Lecture Notes in Computer Science.
Springer-Verlag, 1979.

[Gor88] M. J. C. Gordon. HOL: A proof generating system for higher-order logic.
In G. Birtwistle and P. A. Subrahmanyam, editors, VLSI Specification, Ver-
ification and Synthesis, pages 73–128. Kluwer, Dordrecht, The Netherlands,
1988.

[HI88] Sharam Hekmatpour and Darrel Ince. Software Prototyping, Formal Methods,
and VDM. International Computer Science Series. Addison-Wesley, Woking-
ham, England, 1988.

[Hoo94] Jozef Hooman. Correctness of real time systems by construction. In Lang-
maack et al. [LdV94], pages 19–40.

[JMC94] Steven D. Johnson, Paul S. Miner, and Albert Camlleri. Studies of the single-
pulser in various reasoning systems. In Kumar and Kropf [KK94], pages
126–145.

[KK94] Ramayya Kumar and Thomas Kropf, editors. Theorem Provers in Circuit
Design (TPCD ’94), volume 901 of Lecture Notes in Computer Science, Bad
Herrenalb, Germany, September 1994. Springer-Verlag.

[KSK93] R. Kumar, K. Schneider, and T. Kropf. Structuring and automating hardware
proofs in a higher-order therem proving environment. Formal Methods in
System Design, 2(2):165–223, 1993.

[LdV94] H. Langmaack, W.-P. de Roever, and J. Vytopil, editors. Formal Techniques
in Real-Time and Fault-Tolerant Systems, volume 863 of Lecture Notes in
Computer Science, Lübeck, Germany, September 1994. Springer-Verlag.

[LR93a] Patrick Lincoln and John Rushby. Formal verification of an algorithm for
interactive consistency under a hybrid fault model. In Courcoubetis [Cou93],
pages 292–304.

108

References

[LR93b] Patrick Lincoln and John Rushby. A formally verified algorithm for inter-
active consistency under a hybrid fault model. In Fault Tolerant Computing
Symposium 23, pages 402–411, Toulouse, France, June 1993. IEEE Computer
Society. Reprinted in [FTCS-95, pp. 438–447].

[LR94] Patrick Lincoln and John Rushby. Formal verification of an interactive consis-
tency algorithm for the Draper FTP architecture under a hybrid fault model.
In COMPASS ’94 (Proceedings of the Ninth Annual Conference on Computer
Assurance), pages 107–120, Gaithersburg, MD, June 1994. IEEE Washington
Section.

[McA89] D. A. McAllester. ONTIC: A Knowledge Representation System for Mathe-
matics. MIT Press, 1989.

[McC90] W. McCune. Otter 2.0 users guide. Technical Report ANL-90/9, Argonne
National Laboratory, 1990.

[MPJ94] Paul S. Miner, Shyamsundar Pullela, and Steven D. Johnson. Interaction of
formal design systems in the development of a fault-tolerant clock synchro-
nization circuit. In 13th Symposium on Reliable Distributed Systems, pages
128–137, Dana Point, CA, October 1994. IEEE Computer Society.

[MS95] Steven P. Miller and Mandayam Srivas. Formal verification of the AAMP5
microprocessor: A case study in the industrial use of formal methods. In
WIFT ’95: Workshop on Industrial-Strength Formal Specification Techniques,
pages 2–16, Boca Raton, FL, 1995. IEEE Computer Society.

[MSR85] P. Michael Melliar-Smith and John Rushby. The Enhanced HDM system for
specification and verification. In Proc. VerkShop III, pages 41–43, Watsonville,
CA, February 1985. Published as ACM Software Engineering Notes, Vol. 10,
No. 4, Aug. 85.

[ORSvH95] Sam Owre, John Rushby, Natarajan Shankar, and Friedrich von Henke. For-
mal verification for fault-tolerant architectures: Prolegomena to the design of
PVS. IEEE Transactions on Software Engineering, 21(2):107–125, February
1995. PVS home page: http://pvs.csl.sri.com.

[OS97] S. Owre and N. Shankar. Abstract datatypes in PVS. Technical report,
Computer Science Laboratory, SRI International, Menlo Park, CA, December
1997. Revised version of SRI-CSL-93-9. To appear as a NASA Contractor
Report.

[OSRSC99a] S. Owre, N. Shankar, J. M. Rushby, and D. W. J. Stringer-Calvert. PVS
Language Reference. Computer Science Laboratory, SRI International, Menlo
Park, CA, September 1999.

[OSRSC99b] S. Owre, N. Shankar, J. M. Rushby, and D. W. J. Stringer-Calvert. PVS
System Guide. Computer Science Laboratory, SRI International, Menlo Park,
CA, September 1999.

109

References

[Pra92] Sanjiva Prasad. Verification of numerical programs using Penelope/Ariel. In
COMPASS ’92 (Proceedings of the Seventh Annual Conference on Computer
Assurance), pages 11–24, Gaithersburg, MD, June 1992. IEEE Washington
Section.

[PS89] W. Pase and M. Saaltink. Formal verification in m-eves. In G. Birtwistle and
P. A. Subrahmanyam, editors, Current Trends in Hardware Verification and
Automated Theorem Proving, pages 268–302. Springer-Verlag, 1989.

[Raj94] P. Sreeranga Rajan. Transformations in high-level synthesis: Formal specifi-
cation and efficient mechanical verification. Technical Report SRI-CSL-94-10,
Computer Science Laboratory, SRI International, Menlo Park, CA, October
1994. Revised version of Technical Report NL-TN 118/94, Philips Research
Laboratories, Eindhoven, The Netherlands, April 1994.

[RL76] Lawrence Robinson and Karl N. Levitt. Proof techniques for hierarchically
structured programs. Communications of the ACM, 20(4):271–283, April
1976.

[RLS79] L. Robinson, K. N. Levitt, and B. A. Silverberg. The HDM Handbook. Com-
puter Science Laboratory, SRI International, Menlo Park, CA, June 1979.
Three Volumes.

[Rus95] John Rushby. Proof Movie II: A proof with PVS. Technical report, Computer
Science Laboratory, SRI International, Menlo Park, CA, 1995. Available, with
specification files, at http://www.csl.sri.com/movie.html.

[RvHO91] John Rushby, Friedrich von Henke, and Sam Owre. An introduction to formal
specification and verification using Ehdm. Technical Report SRI-CSL-91-2,
Computer Science Laboratory, SRI International, Menlo Park, CA, February
1991.

[Sha93] Natarajan Shankar. Verification of real-time systems using PVS. In Courcou-
betis [Cou93], pages 280–291.

[SORSC99] N. Shankar, S. Owre, J. M. Rushby, and D. W. J. Stringer-Calvert. PVS
Prover Guide. Computer Science Laboratory, SRI International, Menlo Park,
CA, September 1999.

[SS94] Jens U. Skakkebæk and N. Shankar. Towards a Duration Calculus proof
assistant in PVS. In Langmaack et al. [LdV94], pages 660–679.

[SSMS82] R. E. Shostak, R. Schwartz, and P. M. Melliar-Smith. STP: A mechanized logic
for specification and verification. In D. Loveland, editor, 6th International
Conference on Automated Deduction (CADE), New York, NY, 1982. Volume
138 of Lecture Notes in Computer Science, Springer-Verlag.

[SSR95] Mandayam Srivas, Natarajan Shankar, and Sreeranga Rajan. Hardware verifi-
cation using PVS: A tutorial. Technical report, Computer Science Laboratory,
SRI International, Menlo Park, CA, 1995. Forthcoming.

110

